初中数学用样本估计总体精编教案【通用15篇】
通过样本数据推测总体特征,培养学生对统计方法的理解与应用能力,激发对数据分析的兴趣,如何有效进行样本选择与结果解释呢?以下由阿拉网友整理分享的初中数学用样本估计总体教案相关文章,便您学习参考,喜欢就分享给朋友吧!
初中数学优秀教案 篇1:
一、学情分析:
1、学生的知识技能基础:学生在小学已经学习过非负有理数的四则运算以及运算律。在本章的前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。
2、学生的活动基础:在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察"水位的变化",运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识。
二、教材分析:
教科书基于学生已掌握了有理数加法、减法运算法则的基础上,提出了本节课的具体学习任务:发现探索有理数的乘法法则,了解倒数的概念,会进行有理数的运算。
本节课的数学目标是:
1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;
2、学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况:
三、教学过程设计:
本节课设计了六个环节:第一环节:问题情境,引入新课;第二环节:探索猜想,发现结论;第三环节:验证明确结论;第四环节:运用巩固,练习提高;第五环节:课堂小结;第六环节:布置作业。
第一环节:问题情境,引入新课
问题:
(1)观察教科书给出的图片,分析教科书提出的问题,弄清题意,明确已知是什么,所求是什么,让学生讨论思考如何解答。
(2)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法。
设计意图:培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化,并从第二种算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)从而引出课题:有理数的乘法。
第二环节:探索猜想,发现结论
问题:
(1)由课题引入中知道:4个-3相加等于-12,可以写成算式
(-3×4)=-12,那么下列一组算式的结果应该如何计算?请同学们思考:
(-3)×3=_____;
(-3)×2=_____;
(-3)×1=_____;
(-3)×0=_____。
(2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:
(-3)×(-1)=_____;
(-3)×(-2)=_____;
(-3)×(-3)=_____;
(-3)×(-4)=_____。
教前设计意图:以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的。一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,能力和表述能力。
教后事项:
(1)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论。但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则。
(2)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律。
第三环节:验证明确结论
问题:针对上一环节探究发现的有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零。进行验证活动,出示一组算式由学生完成。
4×(-4)=_____;
4×(-3)=_____;
4×(-2)=_____;
4×(-1)=_____;
(—4)×0=_____;
(—4)×1=_____;
(—4)×2=_____;
(—4)×(-1)=_____;
(—4)×(-2)=_____。
教前设计意图:这个环节的设计一方面是因为它是合情推理的必要环节,另一方面是为了让学生知道从特例归纳得到的结论不一定适合
一般情况,所以要加以验证和证明它的正确性。同时,验证的过程本身就是对有理数乘法法则的练习和熟悉过程。
教后反思事项:
(1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。
(2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算。所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。
(3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算。另外还应注意:法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。
第四环节:运用巩固,练习提高
教前设计意图:对有理数乘法法则的巩固和运用,练习和提高。
教后反思事项:(1)学生先自主尝试解决,全班交流,教师点拨要注意格式规范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由;
(2)例2讲解之后,要启发学生完成"议一议"的内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务。
(-1)×2×3×4=_____;
(-1)×(-2)×3×4=_____;
(-1)×(-2)×(-3)×4=_____;
(-1)×(-2)×(-3)×(-4)=_____;
(-1)×(-2)×(-3)×(-4)×0=_____。
通过对以上算式的计算和观察,学生不难得出结论:多个数相乘,积的符号由负因数的个数,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。当然这段语言,不需要让学习背诵,只要理解会用即可。
第五环节:感悟反思课堂小结
问题
1.本节课大家学会了什么?
2.有理数乘法法则如何叙述?”
3.有理数乘法法则的探索采用了什么方法?
4.你的困惑是什么
教前设计意图:培养学生的口头表达能力,提高学生的参与意识。激励学生展示自我。
教后反思事项:学生小结时,可能会有语言表达障碍或表达不流畅,但只要不影响运算的正确性,则不必强调准确记忆,而应鼓励学生大胆发言,同时教师可用准确的语言适时的加以点拨。
第六环节:布置作业
巩固作业:教科书知识技能1、2;问题解决1;联系扩广1
预习作业;略
四、教学反思:
1、设计条理的问题串,使观察、猜想、验证水到渠成
2、相信学生的探索能力。本节课的内容适合学生探索,只要教师适当引导,学生具有能力探索出有理数的乘法法则的,不需要教师代替,也不能代替。
3、合理使用多媒体教学手段可以弥补课堂时间的不足,但绝不能代替必要的板书。
初中数学优秀教案 篇2:
一、素质教育目标
(一)知识教学点
使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实。
(二)能力训练点
逐步培养学生会观察、比较、分析、概括等逻辑思维能力。
(三)德育渗透点
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。
二、教学重点、难点
1、重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实。
2、难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论。
三、教学步骤
(一)明确目标
1、如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?
2、长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?
3、若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?
4、若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?
前两个问题学生很容易回答。这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识。但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用。同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来。
通过四个例子引出课题。
(二)整体感知
1、请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值。
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值。程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长。
2、请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的。大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知。
(三)重点、难点的学习与目标完成过程
1、通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”。但是怎样证明这个命题呢?学生这时的思维很活跃。对于这个问题,部分学生可能能解决它。因此教师此时应让学生展开讨论,独立完成。
2、学生经过研究,也许能解决这个问题。若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其
顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上。这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的对边、邻边与斜边的比值,是一个固定值。
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透。
而前面导课中动手实验的设计,实际上为突破难点而设计。这一设计同时起到培养学生思维能力的作用。
练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来。
(四)总结与扩展
1、引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的。
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识。
2、扩展:当锐角为30°时,它的对边与斜边比值我们知道。今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的。如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了。看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下。通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣。
四、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念。
五、板书设计
初中数学优秀教案 篇3:
教学目标:
1、初步理解垂直与平行是同一平面内两直线的特殊位置关系,初步认识垂线和平行线。
2、在“演示操作验证解释应用”的过程中,发展学生的空间观念,渗透猜想、与验证的数学思想方法。
教学重点、难点:
正确理解“相交”、“互相平行”、“互相垂直”等概念,发展学生的空间想象力。
教学过程:
一、平面内两直线位置关系
1、操作:
请每位同学在一张纸上画两条直线,这两条直线的位置关系会出现哪些情况?
2、分类:根据学生想象,出示下图(网格):
师:老师课前也绘制了这样6幅图,想一想,按两条直线的不同位置关系,你可以分成哪几类?说说你的分类依据。
3、讨论交流,揭示平面内两条直线的位置关系。
小结:
两条直线,除了“相交”和“不相交”,还可能存在其他的位置关系吗?
板书:
相交
两条直线的位置关系
不相交
二、探究一:垂直
1、平面内两直线相交构成的4个角的特点。
师:首先来研究平面内两条直线“相交”这一情况。
师:平面内直线a和直线b相交与点O,已知1=60,谁能马上求出2、3、4的度数?你是怎么想的?
2、平面内两直线相交的特殊情况。
提问:这4个角的度数有什么特点?固定点O,旋转后,情况还是一样吗?
(旋转至垂直)
师:现在两条直线相交成直角了。继续旋转呢?
除了相交成直角以外,其余的情况,都是任意相交的。
板书: 任意相交
相交
平面内两条直线的位置关系 相交成直角
不相交
3、练习:
下列图形中哪两条直线相交成直角。
○1 ○2 ○3
4、揭示概念。(媒体出示)
板书: 任意相交
相交
平面内两条直线的位置关系 相交成直角 垂直
不相交
5、平面图形中的垂直现象。
下面图形中哪些角是直角?在图上用直角记号标出。哪些线段互相垂直?用垂直符号表示。
○1 ○2 ○3
记作: 记作: 记作:
6、动手操作。
三、探究二:平行
1、提问:长方形中,如果把相对的两条边无限延长,是否会在某一点相交?
2、揭示概念
板书: 任意相交
相交
平面内两条直线的位置关系 相交成直角 垂直
不相交 平行
3、平面图中的平行现象
4、练习
(1)说说下列哪些直线互相垂直?哪些互相平行?
将图2改为:
提问:e和f还平行吗?
将图2改为:
当角1等于角2时,e和f还平行吗?
(2)渗透“同一”平面观念
长方体中,这两条棱相交吗?那么他们平行吗?
板书: 任意相交
相交
同一平面内两条直线的位置关系 相交成直角 垂直
不相交 平行
四、生活中的平行与垂直
1、举例:生活中,你有没有发现“垂直与平行”的现象?
2、提问:为什么这些地方要设计成“垂直”或者“平行”?
五、课堂总结
初中数学优秀教案 篇4:
教学目标
1.使学生正确理解数轴的意义,掌握数轴的三要素;
2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;
3.使学生初步理解数形结合的思想方法.
教学重点和难点
重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.
难点:正确理解有理数与数轴上点的对应关系.
课堂教学过程设计
一、从学生原有认知结构提出问题
1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2.用“射线”能不能表示有理数?为什么?
3.� 本节课主要通过对数据的整理分析,增强学生的社会实践能力,培养学生解决问题能力,增强学生学习数学的兴趣。
2、课程标准
(1)通过实例理解样本数据标准差的意义和作用,学会计算数据的标准差。
(2)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征。
(3)进一步体会用样本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识。
3、学生状况分析
学生在初中已经初步接触了平均数、方差、标准差等数字特征的相关概念,并掌握了用样本的数字特征进行相关的运用,也尝试过探究式的学习方式,所以说从知识和学习方式上学生已具备了自我探究的基础。
4、教学目标
根据上述教材内容与教材地位的分析,按照《普通高中教学课程标准》的要求,考虑到学生已有的认知结构和心理特征,我制定了如下的教学目标:
(1)通过实例让学生明确样本数据的平均数和标准差的意义和作用,能熟练计算样本数据的平均数、方差、标准差。
(2)通过合作探究使学生能从实际问题中合理提取数据,利用样本数据计算方差,标准差,并对总体稳定性水平作出科学的估计。
(3)通过自主探究与合作学习,让学生总结出平均数和方差的常用结论,能深刻领会通过合理的抽样对总体的稳定性水平作出科学的估计的思想。
5、教学重点、难点
重点:(1)通过实例让学生明确样本数据的平均数和标准差的意义和作用,能熟练计算样本数据的平均数、方差、标准差。
(2)通过合作探究使学生能从实际问题中合理提取数据,利用样本数据计算方差,标准差,并对总体稳定性水平作出科学的估计。
难点:理解样本标准差的意义和作用,形成对数据处理过程进行初步评价的意识。
6、教学方法
教法:著名数学家波利亚认为:“学习任何东西最好的途径是自己去发现。”在教学中为了体现以学生发展为本,我进行这样的教法设计,在教师的引导下,通过学生的类比,探究与合作交流进行教学。
学法指导:“授之以鱼,不如授之以渔”,方法的。掌握,思想的形成,才能使学生受益终身。本节课的很多环节都是以学生主动参与为主,通过学生的自主学习完成教学目标。
教学手段:利用电脑和投影仪进行辅助教学。
二、教学程序设计
1、回顾旧知,做好铺垫。
通过复习平均数、方差、标准差使学生熟悉相关公式,为新课的推进做好充分准备。
2、创设情景,导入新课
本节课通过伦敦奥运会射击选拔赛的例子引出课题使学生自觉不自觉地参与了情境中的角色,这样他们的学习积极性和思维活动就会极大地调动起来。因为问题的设置紧扣本节课的教学内容,当学生跃跃欲试地解答时,课题的引入已经水到渠成。学生的学习兴趣很快地吸引到了课堂上来,从而进入主动学习的状态。
3、探究新知,步步为营
质检是产品在生产过程中的一个重要环节,而平均数是工业生产中监测产品质量的重要指标,当样本的平均数超过规定界限的时候,说明这批产品的质量可能距生产要求有较大的偏离,应该进行检查,找出原因,从而及时的解决问题。通过屏幕显示相关的具体实例,让学生深刻理解到用样本的平均数估计总体的平均数时,样本的平均数只是总体的平均数近似。按照学生的认知规律引导学生自主研究,既培养学生的运算能力,又提高学生的合作能力。
处理方式:学生以小组为单位进行讨论。完成任务后,组长可举手示意。
设计意图:不仅营造了学生合作、共同探讨问题的氛围,而且培养了学生从已有的认知结构中去提炼知识的能力。同时也培养了学生的竞争合作意识。
4、巩固应用,提升思维
应用一是公式的拓展,一方面是通过几组数据检查学生对公式的理解和掌握,另一方面通过展示数学的简洁美,来激发学生的发散思维
应用二是实际应用,用一个应聘问题让学生逆向求解,激发学生的发散思维,提升学生的应用能力;同时使学生认识到在解决实际问题时,仅仅依靠均数是片面的。
5、课堂小结,知识梳理
通过学生自我总结,老师补充的方式,达到让学生的学习由感性认识升华为理性认识。
6、课堂小测,巩固反馈
针对自学情况,教师立即小测,完成本节基础知识的学习。
以上就是我对这节课的教学设计。
初中数学优秀教案 篇5:
一、教材分析
(一)教材地位
这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标
知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。
情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。
(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。
二、教法与学法分析:
学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力。他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强。
教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。
三、教学过程设计
1、创设情境,提出问题
2、实验操作,模型构建
3、回归生活,应用新知
4、知识拓展,巩固深化
5。感悟收获,布置作业
(一)创设情境提出问题
(1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树20xx年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。
(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2、5米,请问消防队员能否进入三楼灭火?
设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。
(二)实验操作模型构建
1、等腰直角三角形(数格子)
2、一般直角三角形(割补)
问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?
设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。
问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)
设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。
通过以上实验归纳总结勾股定理。
设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊——一般的认知规律。
(三)回归生活应用新知
让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。
四、知识拓展巩固深化
基础题,情境题,探索题。
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。
基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基。通过学生自己创设情境,锻炼了发散思维。
情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?
设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。
探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放�
设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。
五、感悟收获布置作业:
这节课你的收获是什么?
作业:
1、课本习题
2、搜集有关勾股定理证明的资料。
初中数学优秀教案 篇6:
●教学目标
(一)教学知识点
1.掌握极差、方差、标准差的概念。
2.明白极差、方差、标准差是反映一组数据稳定性大小的。
3.用计算器(或计算机)计算一 组数据的标准差与方差。
(二)能力训练要求
1.经历对数据处理的过程,发展学生初步的统计意识和数据处理能力。
2.根据极差、方差、标准差的大小,解决问题,培养学生解决问题的能力。
(三)情感与价值观要求
1.通过解决现实情境中问题,增强数学素养,用数 学的眼光看世界。
2.通过小组活动,培养学生的合作意识和能力。
●教学重点
1.掌握极差、方差或标准差的概念,明白极差、方差、标准差是刻画数量离散程度的几个统计量。
2.会求一组数据的极差、方差、标准差,并会判断这组数据的稳定性 .
●教学难点
理解方差、标准差的概念,会求一组数据的方差、标准差。
●教学方法
启发引导法
●教学过程
Ⅰ.创设现实问题情景,引入新课
[师]在信息技术不断发展的社会里,人们需要对大量纷繁复杂的信息作出恰当的选择与判断。
当我们为加入“WTO”而欣喜若狂的时� 某外贸公司要出口 一批规格为75 g的鸡腿。现有2个厂家提供货源。
[生](1)根据20只鸡腿在图中的分布情况,可知甲、乙两厂被抽取鸡腿的平均质量分别为75 g.
(2)设甲、乙两厂被抽取的鸡腿的平均质量 甲, 乙,根据给出的数据,得
甲=75+ [ 0-1-1+ 1-2+1+0+2+2-1-1+0+0+1-2+1-2+3+2-3]=75+ ×0=75(g)
乙=75+ [0+3-3+2-1+0-2+4-3+ 0+5-4+1+2-2+3-4+1-2+0]=75+ ×0=75(g)
(3) 从甲厂抽取的这20只鸡腿质量的最大值是78 g,最小值是72 g,它们相差78-72=6 g;从乙厂抽取的这20只鸡腿质量的最大值是80 g,最小值是71 g,它们相差80-71=9(g).
(4)如果只考虑鸡腿的规格,我认为外贸公司应购买甲厂的鸡腿,因为甲厂鸡腿规格比较稳定,在75 g左右摆动幅度较小。
[师]很好。在我们的实际生活中,会出现上面的情况,平均值一样,这里我们也关心数据与平均值的离散程度 .也就是说,这种情况下,人们除了关心数据的“平均值”即“平均水平”外,人们往往还关注数据的离散程度,即相对于“平均水平”的偏离情况。
从上图也能很直观地观察出:甲厂相对于“平均水平”的偏离程度比乙厂相对于“平均水平” 的偏离程度小。
这节课我们就来学习关于数据的离散程度的几个量。
Ⅱ.讲授新课
[师]在上面几个问题中,�
[师]很正确。我们把一组数据中最大数据与 最小数据的差叫极差。而极差是刻画数据离散程度的一个统计量。
[生](1)丙厂这20只鸡腿质量的平均数:
丙= [75×2+74×4+73×2+72×3+76×3+77×3+78×2+79]=(g)
极差为:79-72=7(g)
[生]在第(2)问中,我认为可以用丙厂这20只鸡腿的质量与其平均数的差的和来刻画这20只鸡腿的质量与其平均数的差距。
甲厂20只鸡 腿的质量与相应的平均数的差距为:
(75-75)+(74-75)+(74-75)+(76-75)+(73-75)+(76-75)+(75-75)+(77-75)+(77-75)+(74-75)+(74-75)+(75-75)+(75-75)+(76-75)+ (73-75)+(76-75)+(73-75)+(78-75)+(77-75)+(72-75)
=0-1-1+1-2+1+0+2+2-1-1+0 +0+1-2+1-2+3+2-3=0;
丙厂20只鸡腿的质量与相应的平均数的差距为:
(75-)+(75-)+(74- )+(74-)+(74-)+(74-)+(73-)+(73-)+(72-)+(72-)+(72-)+(76-)+(76-)+(76-)+(77-) +(77-)+(77-)+(78-)+(78-)+(79-)=0
由此可知不能用各数据与平均数的差的和来衡量这组数据 的波动大小。
数学上,数据的离散程度还可以用方差或标准差来刻画。
其中方差是各个数据与平均数之差的平方的平均数,即
s2= [(x1- )2+(x2- )2+…+(xn- )2]
其中 是x1,x2,…,xn的平均数,s2是 方差,而标准差就是方差的算术平方根。
[生]为什么方差概念中要除以数据个数呢?
[师]是为了消除数据个数的印象。
由此我们知道:一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。
[生]极差还比较容易算出。而方差、标准差算起来就麻烦多了。
[师]我们可以使用计算器,它可以很方便地计算出一组数据的标准差与方差,其大体步骤是 ;进入统计计算状态,输入数据,按键就可得出标准差。
同学们可在自己的计算器上探 索计算标准差的具体操作
计算器一般不具有求方差的功能,可以先求出标准差,再平方即可求出方差。
[生]s甲2= [02+1+1+1+4+1+0+4+4+1+1+1+4+1+4+9+4+9]= ×50= =;
s丙2= [++×4+×2+×3+×3+×3+×2+]= ×76 .49=
因为s甲2<s丙2.
所以根据计算的结果,我认为甲厂的产品更符合要求。
Ⅲ.随堂练习
Ⅳ.课时小结
这节课 ,我们着重学习:对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小;描述一组数据的波动大小的量不止一种,最常用的极差、方差、标准差;方差 和标准差既有联系 ,也有区别。
Ⅴ.课后作业
Ⅵ.活动与探究
甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析如下:
(1)请你填上表中乙学生的相关数据;
(2)根据你所学的统计数知识,利用上述某些数据评价甲、乙两人的射击水平。
初中数学教案 篇7:
教学目标:
1、知识与技能:使学生经历相似多边形概念的形成过程,了解相似多边形的定义,并能根据定义判断两个多边形是否相似。
2、过程与方法:在探索相似多边形本质特征的过程中,进一步发展学生归纳、类比、反思、交流等方面的能力,体会反例的作用。
3、情感态度与价值观:通过观察、推断得到数学猜想、获得数学结论的过程,体验数学活动充满了探索性和创造性。
教学重点:探索相似多边形的定义过程,以及用定义去判断两个多边形是否相似。
教学难点:探索相似多边形的定义过程。
教学过程:
(一)创设情景,导入新课。(3分钟)
由于学生已经学习了形状相同的图形,在这里我向学生展示一组图片(课件),引导学生从中找出形状相同的图形。学生回答后,利用课件演示抽象出多边形。
大多数学生可能会指出黑板边框的内外边缘所围成的矩形的形状也相同。我紧接着创设悬念:这两个矩形的形状相同吗?
利用课件演示,把内边缘的矩形的长和宽按相同比例放大后不能与外边缘矩形重合。此时的学生肯定倍感疑惑,急切想探个究竟。教师顺势导入新课:
那么满足什么条件的多边形才是形状相同的多边形呢?今天我们一起来探究相似多边形。
(二)自主学习,合作探究。(15分钟)
1、动手实验,初步感知定义。
课前发给每个小组一套相似多边形的图片(其中包括两个相似三角形、一个等边三角形、两个相似四边形),组织学生按形状相同给多边形找朋友。然后引导学生以小组为单位从中选择一组多边形探究解决下面问题。
(1)在这两个多边形中,是否有相等的内角?设法验证你的猜想。
(2)在这两个多边形中,相等的内角的两边是否成比例?
(设计意图:引导学生分组讨论、探究、验证、交流,并进行演示,着重引导学生说明验证的方法,无论学生提出什么样的验证方式,只要有道理,教师都应给予充分肯定和鼓励。)
对相等内角的两边是否对应成比例这个问题学生可能会感到困难,由于学生已经学习了成比例线段,我会利用这一点启发学生运用测量、计算的方法解决这一难点。
利用多媒体演示形状相同的六边形的对应角相等,然后让学生观察计算得到,相等的内角的两边成比例。然后给出对应角、对应边的概念,引导学生明确对应角、对应边的含义。
2、特例探究,进一步体验定义。 (课件出示问题)
例:下列每组图形形状相同,它们的对应角有怎样的关系?对应边呢?
(1)三角形ABC与正三角形DEF;
(2)正方形ABCD与正方形EFGH.
(设计意图:引导学生通过自主探究解决这个问题后进行适当引申,使学生认识到:边数相同的正多边形都相似。)
3、归纳总结,形成概念。
教师设问:回忆一下我们刚才探究过的每一组多边形,你能发现它们的共同特点吗?(课件出示四组图形)
(设计意图:引导学生尝试用自己的语言叙述定义,教师给予规范并板书。随即给出相似多边形的表示方法和相似比的概念,接下来引导学生回忆表示全等三角形时应注意的问题,也就是要把表示对应顶点的字母写在对应的位置上,然后引导学生用类比的方法得到:在记两个多边形相似时也要把表示对应顶点的字母写在对应的位置上,说明相似比与两个多边形叙述的顺序有关。)
4、深化理解。
(1)满足什么条件的两个多边形相似?
(2)如果两个多边形相似,那么它们的对应角和对应边有什么关系?
(设计意图:使学生认识到:相似多边形的定义既是最基本最重要的判定方法,也是最本质最重要的特征。)
(三)辨析研讨,知识深化。(14分钟)
1、议一议:
(1)观察下面两组图形,图(1)中的两个图形相似吗?为什么?图(2)中的两个图形呢?与同桌交流。 (课件出示图形)
(2)如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗?
(3)如果两个菱形相似,那么他们需要满足什么条件?
(设计意图:为了培养学生从多角度理解问题,我运用教材中两个典型的反例,引导学生讨论探究,使学生认识到:不相似的两个多边形的角也可能对应相等,不相似的两个多边形的边也可能对应成比例;反过来说:只具备各角分别对应相等或各边分别对应成比例的多边形不一定相似。进而使学生明确:判断两个多边形形相似,各角分别对应相等、各边分别对应成比例这两个条件缺一不可。通过正反两方面的对照,能使学生更深刻地理解相似多边形的定义。这是个易错点,教学时应注意给学生留出充分思考交流的时间。另外在设计时,我在教材原有内容的基础上添加了菱形的情况(见课件),引导学生探索两个菱形相似需要满足什么样的条件。)
2、做一做。
设问:学到这儿,你认为黑板边框内外边缘所成的这两个矩形相似吗?请你计算说明。课件出示问题:
一块长3m、宽的矩形黑板,镶在其外围的木质边框宽边框的内外边缘所成的矩形相似吗?为什么?(学生自主探索解决)
(设计意图:为了满足学生多样化的学习需求,使不同的学生都能获得令自己满意的数学知识,我把此题进行了适当的拓展和延伸。)
拓展一:如果将黑板的上边框去掉,其他条件不变。
那么边框内外边缘所成的矩形相似吗?为什么?
拓展二:在拓展一的基础上,如果矩形的长为2a,宽为a,
边框的宽度为x。那么边框内外边缘所成的矩形还相似吗?为什么?
(设计意图:引导学生讨论计算,解决问题。目的是让学生明确并不是所有相互套叠的两个矩形都不相似。使学生初步认识到直观有时是不可靠的,研究数学问题需要在提出猜想的基础上进行推理和计算,帮助学生养成严谨的学风。)
(四)学以致用,巩固提高。(6分钟)
慧眼识金!
1、判断下列各题是否正确:
(1)所有的矩形都相似。
(2)所有的正方形都相似。
(3)对应边成比例的两个多边形相似 问题解决!
2、下图中两面国旗相似,则它们对应边的比为 。
3、如图,两个正六边形广场砖的边长分别为a和b,它们相似吗?为什么?
(课件出示图形)
(设计意图:为了体现相似图形在生活中的广泛应用,我以实际问题为背景设计练习题。这是一组基础题,意在巩固相似多边形的定义以及相似比的计算。)
(五)课堂小结,知识升华。(2分钟)
师生共同完成。
(设计意图:教师首先肯定学生在课堂中大胆的猜想和思维的积极性,然后引导学生从几方面进行反思:我学会了什么,我最感兴趣的是,我发现了什么,我能解决,我获得的数学方法是帮助学生构成新的知识网络,形成技能。)
(六)布置作业:
1、 P113 习题第3题
2、画一画:在方格纸中画出两个相似多边形。
3、探究题:小林在一块长为6m,宽为4m一边靠墙的矩形的小花园周围,栽种了一种蝴蝶花装饰,这种蝴蝶花的边框宽为20cm,边框内外边缘所围成的两个矩形相似吗?第1、2题作为必做题;第3题作为选做题,是对课堂上做一做的再次拓展和延伸:当矩形的长与宽的比不再是2:1时,边框内外边缘所围成的两个矩形还相似吗?
板书设 4、相似多边形
定义: 各角对应相等,
各边对应成比例
表示方法:∽
相似比:
初中数学教案 篇8:
一、教学目标
知识与技能:使学生了解正数与负数是从实际需要中产生的;
过程与方法:使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量;
情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力
二、教学重点和难点
负数的引入和意义
三、教学过程
创设情景,生活实例引入,观察猜想,合作探究
(一)、从学生原有的认知结构提出问题
大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。
为了表示一个人、两只手、……,我们用到整数1,2,……
为了表示半小时、四元八角七分、……,我们需用到分数1/2和小数4。87、……
为了表示“没有人”、“没有羊”、……我们要用到0。
但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示。
(二)、师生共同研究形成正负数概念
某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。
它们是具有相反意义的两个量。
现实生活中,像这样的相反意义的量还有很多。
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155 米,“高于”和“低于”其意义是相反的。
又如,某仓库昨天运进货物 吨,今天运出货物 吨,“运进”和“运出”,其意义是相反的。
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作—5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“—”号,就把两个相反意义的量筒明地表示出来了。
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作—155米;
运进纲物 吨,记作+ ;运出货物 吨,记作— 。
教师讲解:什么叫做正数?什么叫做负数。
强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“—”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号
(三)、运用举例 变式练习
例1 所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:
—11,4,8,+73,—2,7, , ,—8,12, — ;
正数集合 负数集合
此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分。然后,指出不仅可以用圈表示集合,也可以用大括号表示集合
课堂练习
任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:
正数集合:{ …},
负数集合:{ …}
四、课堂小结
由于实际生活中存着许多具有相反意义的量,因此产生了正数与负数正数是大于0的数,负数就是在正数前面加上“—”号的数0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃
五、作业布置
1。北京一月份的日平均气温大约是零下3℃,用负数表示这个温度
2。在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着—392,这表明死海的湖面与海平面相比的高度是怎样的?
3。在下列各数中,哪些是正数?哪些是负数?
—16,0,004,+ ,— , ,25,8,—3,6,—4,9651,—0,1。
4。如果—50元表示支出50元,那么+200元表示什么?
5。河道中的水位比正常水位低0。2米记作—0。2米,那么比正常水位温0。1米记作什?
6。如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作么?
7。一物体可以左右移动,设向右为正,问:
(1)向左移动12米应记作什么?(2)“记作8米”表明什么?
初中数学优秀教案 篇9:
教学目标:
通过实例,使学生体会用样本估计总体的思想,能够根据统计结果作出合理的判断 和推测,能与 同学进行交流,用清晰的语言表达自己的观点。
重点难点:
重点、难点:根据有关问题查找资料或调查,用随机抽样的方法选取样本,能用样本的平均数和方差,从而对总体有个体有个合理的估计和推测。
教学过程:
一、课前准备
问题:20xx年北京的空气质量情况如何?请用简单随机抽样方法选取该年的30天,记录并统计这30天北京的空气污染指数,求出这30天的平均空气污染指数,据此估计北京20xx年全年的平均空气 污染指数和空气质量状况。请同学们查询中国环境保护网。
二、新课
师生用随机抽样的方法选定如下表中的30天,通过上网得知北京在这30天的空气污染指数及质量级别,如下表所示:
这30个空气污染指数的平均数为107,据此估计该城市20xx年的平均空气污染指数为107, 空气质量状况属于轻微污染。
讨论:同学们之 间互相交流,算一算自己选取的样本的污染指数为多少?根据样本的空气污染指数的平均数,估计这个城市的空气质量 。
2、体会用样本估计总体的合理性
下面是老师抽取的样本的空气 质量级别、所占天数及比例的统计图和该城市20xx年全年的相应数据的统计图,同学们可以通过比较两张统计图,体会用样本估计总体的合理性。
经比较可以发现,虽然从样本获得的数据与总体的不完全一致,但这样的误差 还是可以接受的,是一个较好的估计。
练习:同学们根据自己所抽取的。样本绘制统计图,并 和20xx年全年的相应数据的统计图进行比较,想一想用你所抽取的样本估计总体是否合理?
显然,由于各位同学所抽取的样本的不同,样本的污染指数不同。但是,正如我们前面已经看到的,随着样本容量(样本中包含的个体的个数)的增加,由样本得出的平均数往往会更接近总体的平均数,数学家已经证明随机抽样方法是科学而可靠的 . 对于估计总体特性这类问 题,数学上的一般做法是给出具有一定可靠程度的一个估计值的范围,将来同学们会学习到有关的数学知识。
3、加权平均数的求法
问题1:在计算20个男同学平均身高时,小华先将所有数据按由小到大的顺序排列,如下表所示:
然后,他这样计算这20个学生的平均身高:
小华这样计算平均数可以吗?为什么?
问题2:假设你们年级共有四个班级,各班的男同学人数和平均身高如下表所示。
小强这样计算全年级男同学的平均身高:
小强这样计算平均数可以吗?为什么?
练习:在一个班的40学生中,14岁的有5人,15岁的有30人,16岁的有4人,17岁的有1人,求这个班级学生的平均年 龄。
三、小结
用样本估计总体 时,样本容量越大,样本对总体的估计也就越精确。相应地,搜集、整理、计算数据的工作量也就越大,随机抽样是经过数学证明了的可靠的方法,它对于 估计总体特征是很有帮助的。
四、作业
习题 1
初中数学优秀教案 篇10:
一、教材内容及设置依据
教材内容本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。
设置依据教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。
二、教材的地位和作用
本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,
特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了
类比依据。也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。
三、对重点、难点的处理
对重点的处理本节的重点是有理数加减混合运算的方法及在实际生活中的应用。为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:1、知识巩固型2、实际应用型3、方法多变型4、知识拓展型等。
对难点的处理对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)
四、关于教学方法的选用
根据本节课的内容和学生的实际水平,本节课可采用的方法:
1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。
2、引导发现法:它符合辩证唯物主义中内因与外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导启发,充分调动学生学习的主动性。
3、小组合作、探究讨论:通过合作讨论,使学生形成一个“学习共同体”,在这个共同体内相互交流、相互沟通、相互启发、相互补充,分享彼此的思考、经验和知识,交流彼此的情感、体验和观念,共同体验成功的喜悦,使学生体会到集体的力量,形成合作的意识,产生合作的愿望。
五、关于学法的指导
“授人以鱼,不如授人以渔”,在教給学生知识的同时,要教给他们好的学习方法,让他们“会学习”在本节课的教学中,在提出问题后,要鼓励学生分析、探索、讨论,确定出问题解决的办法。通过小组探究交流,得到解决问题的不同方法,开拓了思路,培养了思维能力。同时意识到:数学是生活实际中的数学、大自然中的数学,萌生了用数学解决实际问题的意识、愿望。
六、课时安排:1课时
教学程序:
一、复习铺垫:
首先利用多媒体出示一组有关有理数的加法、减法的题目,让学生进行速算比赛,看谁做的又对又快。
1、45+(-23)2、9-(-5)
3、-28-(-37)4、(-13)+0
5、(-29)+(-31)6、(-16)-(-12)-24-(-18)7、-(-)-、(-42)+57+(-84)+(-23)
从四排学生中个推选一名学生代表板演6、7、8、题。
通过比赛的方式,符合学生的心理特点,迎合了学生好胜的心理,激起了学生学习的内在动力,激发了学习的兴趣。
然后教师与学生一起对题目进行评判,对优胜的学生进行表扬,对其他学生加以鼓励,使他们意识到“胜败乃兵家常事”,关键要有信心,要有高昂的斗志。通过练习,学生已在不知不觉中复习了有理数的加法、减法法则,特别是减法法则,加深了印象,这符合教学论中的巩固性原则,为后面学习有理数的加减混合运算奠定了基础。
二、新知探索:
1、出示引例1:一架飞机作特技表演,起飞后的高度变化如下表:高度变化记作
上升千米+千米
下降千米-千米
上升千米+千米
下降千米-千米
此时飞机比起飞点高了多少米?
让学生分组探究讨论,让学生发表自己的见解,不难得出两种算法:
①+(-)++(-)②-+-
=++(-)=+-
=+(-)=-
=1千米=1千米
教师随之提出问题:比较以上两种算法,你发现了什么?通过学生的合作讨论、教师的引导、规纳、总结可得出:加减法混合运算可以统一成加法;加法运算可以写成省略括号及前面加号的形式。使学生在解决问题的过程中体会到“代数和“的含义。这里不要求出现“代数和”的名称。通过小组合作,探究讨论,让每一个学
初中数学优秀教案 篇11:
学习目标:
1、从实际生活中感受有序数对的意义,并会确定平面内物体的位置。
2、通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会具体-抽象-具体的数学学习过程。
3、培养学生的合作交流意识和探索精神,创造性思维意识。体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。
学习重点:理解有序数对的概念,用有序数对来表示位置。
学习难点:理解有序数对是有序的并用它解决实际问题,
学习过程:
一、 学前准备
预习疑难: 。
二、 探索与思考
1、 观察思考:观察下图,什么时候气温最低?什么时候气温最高?你是如何发现的?
2、想一想:你看过电影吗?在电影院内,确定一个座位一般需要几个数据,为什么?
(1)如何找到6排3号这个座位呢?
(2)在电影票上6排3号与3排6号有什么不同?
(3)如果将6排3号简记作(6,3),那么3排6号如何表示?
(4)(5,6)表示什么含义?(6,5)呢?
3、结论:
①可用排数和列数两个不同的数来确定位置;
②排数和列数的先后顺序对位置有影响。
4、概念:
有序数对:用含有 的词表示一个 位置,其中各个数表示不同的含义,我们把这种 两个数a与b组成的数对,叫做有序数对,记作(a,b)。
三、 理解与运用
(一)用有序数对来表示位置的情况是很常见的。如人们常用经纬度来表示地球上的地点。你有没有见过用其他的方式来表示位置的?
(二)应用
例1 如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)(4,5)(5,5)(5,4)(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?
分析:图中确定点用前一个数表示大街,后一个数表示大道。
解:其他的路径可以是:
(3,5)(4,5)(4,4)(5,4)(5,3);
(3,5)( ,5)(4,4)( , )(5,3);
(3,5)( , )( , )( , )(5,3);
四、学习体会:
1、 本节课你有哪些收获?你还有哪些疑惑?
2、 预习时的疑难解决了吗?
五、自我检测
1、小游戏:
怪兽吃豆豆是一种计算机游戏,图中的标志表示怪兽先后经过的几个位置。 如果用(1,2)表示怪兽按图中箭头所指路线经过的第3个位置。 那么你能用同样的方表示出图中怪兽经过的其他几个位置吗?
2、如图,马所处的位置为(2,3).
(1) 你能表示出象的位置吗?
(2) 写出马的下一步可以到达的位置。
3、右图是国际象棋的棋盘,E2在什么位置?又如何描述A、B、C的位置?
4、有趣玩一玩:
中国象棋中的马颇有骑士风度,自古有马踏八方之说,如图六(1),按中国象棋中马的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从日字形长方形的对角线的一个端点到另一个端点,不能多也不能少。
要将图六(2)中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一种走法:(四,6)(六,5)(四,4)(五,2)(六,4)
(1) 下面提供另一走法,请填上所缺的一步:(四,6)(五,8)(七,7)___(六,4)
(2)请你再给出另一种走法(要与前面的两种走法不完全相同即可,步数不限),你的走法是:
六、方法归类
常见的确定平面上的点位置常用的方法
(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。
如图,以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。
1、如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:
(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?
(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?
(3)要确定每艘敌舰的位置,各需要几个数据?
2、如图是某城市市区的一部分示意图,对市政府来说:
(1) 北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?
(2) 火车站与学校分别位于市政府的什么方向,怎样确定他们的位置?
初中数学用样本估计总体优秀教案 篇12:
一、教学目的:
1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;
2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力。
二、重点、难点
1.教学重点:菱形的两个判定方法。
2.教学难点:判定方法的证明方法及运用。
三、例题的意图分析
本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.
四、课堂引入
1.复习
(1)菱形的定义:一组邻边相等的平行四边形;
(2)菱形的性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角;
(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)
2.问题
要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?
3.探究
(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?
通过演示,容易得到:
菱形判定方法1对角线互相垂直的平行四边形是菱形。
注意此方法包括两个条件:
(1)是一个平行四边形。
(2)两条对角线互相垂直。
初中数学优秀教案 篇13:
素质教育目标
(一)知识储备点:
1.知道抽样调查的合理性。
2.知道当样本越大时,对总体的估计越精确。
3.会用样本去估计总体,体会用样本去估计总体的思想。
4.能通过实验明确不同样本对总体的估计值也不同。
5.会利用加权平均数。
(二)能力培养点:进一步培养收集、分析实验数据的能力。
(三)情感体验点:通过对样本数据的分析处理感受到数是描述现实世界的重要手段,培养学生良好的学习品质。
教学设想:
1.重点:抽样调查的科学性及用样本去估计总体。
2.难点:用样本去估计总体。
3.疑点:抽样调查的可靠性。
4.课型与基本教学思路:新授课。从上节课得出的三个样本着手,计算出三个样本及总体的平均数、标准差。让学生比较总体与样本数据并发现有差异的同时,再随机抽样出两个样本(容量分别为10,40)进行比较,从而使学生明白容量越大,与总体的差异越小。在此基础上,让学生学会用样本去估计总体。
教学步骤
1.情境导入
同学们是否记得上节课利用随机抽样得出的样本吗?,我们就用这些样本去考察这300名同学的'成绩的平均值、标准差及成绩分布,想必同学们就会思考能用三组数据去考察300个数据的情况吗?今天我们就来研究这个问题。
2.课前热身
请同学们分组算出这5个样本的平均数、标准差,并交流结果。
3.合作探究
(1)整体感知
在教师引导下学生通过对亲自随机抽样实验得出的几个样本数据的整理分析,同时与总体的特征量的比较,让学生明白当样本中个体数目较大时一般是可以反映总体的特征,从而知道抽样调查是可靠的。
(2)互动
师:同学们还记得上节课通过随机抽样得出的三组样本吗?请同学们分别算出每个样本的平均数、标准差,并画出频率直方图。
初中数学教案 篇14:
知识技能
会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考
1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题
能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度
经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点
建立方程解决实际问题,会通过移项解 “ax+b=cx+d”类型的一元一次方程。
教学难点
分析实际问题中的相等关系,列出方程。
教学过程
活动一知识回顾
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+=-10
4. 3x-7x=2
提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?
教师:前面我们学习了简单的'一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)
教师追问:变形的依据是什么?
学生独立思考、回答交流。
本次活动中教师关注:
(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本。这个班有多少学生?
教师:出示问题(投影片)
提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?
(学生尝试提问)
学生:读题,审题,独立思考,讨论交流。
1.找出问题中的'已知数和已知条件。(独立回答)
2.设未知数:设这个班有x名学生。
3.列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)
4.找相等关系:
这批书的总数是一个定值,表示它的两个等式相等。(学生回答,教师追问)
初中数学优秀教案 篇15:
一、教材分析
(一)本节课在教材中的地位及作用:本节课是中考考纲中规定的必考内容,它对整章节教学起承上启下的作用,学好梯形会有举一反三、以一当十的作用。
(二)课时安排:
两课时。本节课是第一课时,第二课时是梯形的判定及应用
(三)教学目标
1、知识与技能目标:
掌握梯形的有关概念、等腰梯形的性质和五种基本辅助线。
2、过程与方法目标:
⑴使学生在探究梯形相关的概念和等腰梯形的性质的过程中发展学生的说理意识;
⑵在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略、
3、情感、态度与价值观目标:
让学生们体会数学活动充满着思考与创造的乐趣,体验与同学合作交流的愉悦;
(四)教学重点、难点:
本节课的教学重点分成三个层次:
1、掌握梯形的定义,认识梯形的其他相关概念;
2、熟练应用等腰梯形的性质;
3、通过实际操作研究梯形的基本辅助线作法。
本节课的教学难点确定为:灵活添加辅助线,把梯形转化成平行四边形或三角形。原因是解决梯形问题往往要转化成平行四边形和三角形来处理,经常需要添加辅助线,对于刚刚接触梯形的学生难免会有无从下手的感觉,往往会有题目一讲就明白但自己不会分析解答的情况发生。
为达成以上的教学目标,解决重点、突破难点,我的课堂教学设计的指导思想为:努力实现对传统课堂教学模式的五个突破——以学生主体观念突破教师中心、以学生主体活动突破课堂中心、以学生主体参与突破讲解中心、以学生主体经验突破书本中心、以学生主体能力发展突破考试中心。在这样的理念下,我设计了如下的教法、学法和教学程序:
二、教学方法:
根据《新课标》的要求,立足于学生的生活经验和已有的数学活动经验,本节课我采用“引、动、导、探”教学法,实施“二、四、六”教学模式,即两个探究层次、四个教学环节、六步教学程序。如陶行知先生所说的:在方法上应该是“行”为先,“知”为后。
三、学习方法:
初二的学生已经基本具备了《新课标》中要求的“初步的空间观念”《新课标》指出:有效的数学学习活动不能单纯依赖模仿和记忆。为了充分体现《新课标》的要求,本节课采用“做、思、问、辩、议”的五步学习法、正如波利亚所说的:“学习任何知识的途径,都是自己去发现。”
四、教具、学具准备:
多媒体,小黑板,常用画图、剪纸工具,矩形纸片,平行四边形纸片,信纸
五、教学程序:
共有六步
(一)情境引发
(二)活动探索、研究发现
(三)深化建构
(四)迁移运用
(五)系统概括
(六)布置作业,拓展思维
这六步教学程序在教案中都详细介绍了,我只把教学的主线和总的设计意图说一说。
在前三个环节我都是以剪纸为主线:俗语说:良好的开端是成功的一半所以我先是利用平行四边形纸片剪梯形,然后是利用矩形纸片剪特殊梯形,再利用剪出的等腰梯形研究发现等腰梯形的性质,这样一环扣一环的完成教学目标,并解决本节课的两个重点。这样设计的目的是:如《新课标》中所说的“数学教学是数学活动的教学”所以在设计这节课时我没有一味的照本宣科,而是让学生们在操作中发现,在操作中探究,在操作中升华,借助于优美的课件使课堂真正成为学生的舞台,以自己的行动实践了一句话“教是为了不教”
在第四个环节迁移运用里本着“学以致用”的原则,在这里我设计了“练一练,议一议,试一试,想一想”四个环节。
由学生独立完成,用实物展台展示学生解答过程,集体评价、完善,规范学生的解题过程、并着重解决梯形的辅助线问题,由学生归纳、补充、完善,在黑板的主板面——中间位置逐一列出。
设计意图:解决梯形问题的策略很多,在这里我没有单纯的就辅助线来研究辅助线而是把知识点蕴含在习题中,再归纳总结。华应龙老师说:的课堂,本质上是一种“有助于启动和启发思维的酵母”。我就想通过这样做使学生的思维自然而然的过渡到本节课的难点上,这样设计培养了学生的发散思维,通过一题解决一类问题、顺利的突破了本节课的难点
在第五个环节系统概括里我没有采用传统的学生或老师小结的方式而是以探究课题的方式出现从下面三个题目中任选一个作为探究课题:
1、平行四边形和梯形的区别和联系;
2、我看等腰梯形的特殊性;
3、解决梯形的常用方法。
以小组为单位共同完成,将探究结果以文章的形式呈现。我这样设计的目的是这三个题目就是本节课的主要内容无论学生选择哪一个,在浏览、思考、准备、生成的过程中即达到了概括的目的又发展了学生的能力。
在第六个环节在作业内容的设计上,我改变了传统的以巩固知识为目的的单一的作业形式,留的两项作业都是考察学生能力的
1、拓展性作业:在平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形:
(1)等腰梯形
(2)直角梯形(要求:所拼成的图形互不重叠且不留空隙)
2、发挥想象,以梯形为基础图案设计通钢三中第__届运动会的会徽
我这样设计的目的是:即是学生乐于接受的又突出体现实践性、探究性、发展性,使学生所学知识得以升华,在设计会徽时还可以适当的对学生进行情感教育,同时为下节课的学习埋下伏笔、
六、有四点说明:
1、板书设计分为三个部分:(左)梯形定义和性质;(中)梯形五种辅助线的作法及图形;(右)大屏幕。这堂课的板书力求做到形象直观,适当运用彩粉笔,突出重难点,便于学生理解,起到深化主题,回顾中心的作用。
2、时间的大体安排:情境引发大约3分钟,活动探索、研究发现,大约15分钟,深化建构约8分钟,迁移运用大约13分钟,系统概括及布置作业6分钟。
3、教学反思需要课后填写4、整个设计要突出体现的特色:让学生动手操作,让学生实践验证,让学生自己设计,学生能说的我不说,学生能做到的我不做,努力做到“教是因为需要教”。
七、教学预测:
本节课内容较多尤其是辅助线的几种作法在一课时内完成,有部分学生在探究问题的深度和广度上可能会有所欠缺。以上是我基于《梯形》在教材中的地位和初二学生的认知特点在新课程理念指导下作出的教学设计,敬请各位专家批评指正。
下一篇:返回列表