高中必修5数学教学教案【优秀22篇】

网友 分享 时间:

本教案旨在通过系统讲解高中必修5数学知识,培养学生的逻辑思维能力与解决问题的能力,提升综合素质。下面是勤劳的小编为大家分享的高中必修5数学教学教案范例,欢迎借鉴参考。

高中数学学习方法技巧总结 篇1

基础很重要,保持耐心多巩固

要学好数学,最关键的是要有一个好的基础。只有打牢数学基础,才能够把高中数学好,同样只有打好基础,才能够数学取得高分。打好基础是最关键的!比如:建一栋大楼,如果地基不稳,不管大楼有多么豪华,都只是华而不实。

想学好数学,对数学感兴趣

其实学好数学最好的办法就是发自内心由衷的想要学习,渴望学习,才能体会到从学习中所收获的乐趣。自己的成就感提升,对于学习数学的积极性也就提高了,觉得数学并没有那么难,就愿意去多接触了。

多做题反复做,有题感

其实学好数学办法就是要大量做题,反复去做,题做多了就知道哪些方面需要自己去加强学习,还有就是同样做数学题做多了就会有题感。有些题,它的类型都是一样的,题做多了之后,即使你不会做,你也会找到一些解题的思路和技巧。

高中数学必修5教案 篇2

教学目标

1.数列求和的综合应用

教学重难点

2.数列求和的综合应用

教学过程

典例分析

3.数列{an}的前n项和Sn=n2-7n-8,

(1)求{an}的通项公式

(2)求{|an|}的前n项和Tn

4.等差数列{an}的公差为,S100=145,则a1+a3 + a5 + …+a99=

5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=

6.数列{an}是等差数列,且a1=2,a1+a2+a3=12

(1)求{an}的通项公式

(2)令bn=anxn ,求数列{bn}前n项和公式

7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数

8.在等差数列{an}中,a1=20,前n项和为Sn,且S10= S15,求当n为何值时,Sn有最大值,并求出它的最大值

.已知数列{an},an∈N,Sn= (an+2)2

(1)求证{an}是等差数列

(2)若bn= an-30 ,求数列{bn}前n项的最小值

0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)

(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列

(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.

11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)

12 .某商品在最近100天内的价格f(t)与时间t的

函数关系式是f(t)=

销售量g(t)与时间t的函数关系是

g(t)= -t/3 +109/3 (0≤t≤100)

求这种商品的日销售额的最大值

注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值。

高中数学必修五教案 篇3

教学分析

本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展。在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小。

通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用。对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程。即能用不等式或不等式组把这些不等关系表示出来。在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望。根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小。

在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上 点的一一对应关系,从数与形两方面建立实数的顺序关系。要在温故知新的基础上提高学生对不等式的认识。

三维目标

1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系。

2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围。

3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美。

重点难点

教学重点:比较实数与代数式的。大小关系,判断二次式的大小和范围。

教学难点:准确比较两个代数式的大小。

课时安排

1课时

教学过程

导入新课

思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课。

思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系。这些不等关系怎样在数学上表示出来呢让学生自由地展开联想,教师组织不等关系的相关素材,让学 生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着。这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课。

推进新课

新知探究

提出问题

1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同。怎样利用不等式研究及表示不等关系

2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。你能举出一些实际例子吗

3数轴上的任意两 点与对应的两实数具有怎样的关系

4任意两个实数具有怎样的关系用逻辑用语怎样表达这个关系

活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同。不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a

教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系。在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容。

实例1:某天的天气预报报道,气温32 ℃,最低气温26 ℃.

实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA

实例3:若一个数是非负数,则这个数大于或等于零。

实例4:两点之间线段最短。

实例5:三角形两边之和大于第三边,两边之差小于第三边。

实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.

实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于%,蛋白质的含量p应不少于%.

教师进一步点拨:能够发现身 边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢学生很容易想到,用不等式或不等式组来表示这些不等关系。那么不等式就是用不等号将两个代数式连结起来所成的式子。如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等。

教师引导学生将上述的7个实例用不等式表示出来。实例1,若用t表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图。

|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.

|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以。

实例6,若用v表示速度,则v≤40 km/h.实例7,f≥%,p≥%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥%或p≥%,这是不对的但可表示为f≥%且p≥%.

对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论。

讨论结果:

(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大。

(4)对于任意两个实数a和b,在a=b,a>b,a应用示例

例1(教材本节例1和例2)

活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法。

点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握。

变式训练

1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是(  )

(x)>g(x)       (x)=g(x)

(x)

答案:A

解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).

2.已知x≠0,比较(x2+1)2与x4+x2+1的大小。

解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.

∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.

例2比较下列各组数的大小(a≠b).

(1)a+b2与21a+1b(a>0,b>0);

(2)a4-b4与4a3(a-b).

活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定。本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点。

解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.

∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.

(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)

=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]

=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].

∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),

又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.

∴a4-b4<4a3(a-b).

点评:比较大小常用作差法,一般步骤是作差——变形——判断符号。变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用。

变式训练

已知x>y,且y≠0,比较xy与1的大小。

活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系。

解:xy-1=x-yy.

∵x>y,∴x-y>0.

当y<0时,x-yy<0,即xy-1<0. ∴xy<1;

当y>0时,x-yy>0,即xy-1>0.∴xy>1.

点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论。

例3建筑设计规定,民用住宅的窗户面积必须小于地板面积。但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好。试问:同时增加相等的窗户面积和地板面积, 住宅的采光条件是变好了,还是变坏了请说明理由。

活动:解题关键首先是把文 字语言转换成数学语言,然后比较前后比值的大小,采用作差法。

解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a

由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,

因此a+mb+m>ab≥10%.

所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了。

点评:一般地,设a、b为正实数,且a

变式训练

已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则(  )

+a8>a4+a5        +a8

+a8=a4+a5 +a8与a4+a5大小不确定

答案:A

解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4

=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).

∵{an}各项都大于零,∴q>0,即1+q>0.

又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.

课堂小结

1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中。

2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方。鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究。

作业

习题3—1A组3;习题3—1B组2.

设计感想

1.本节设计关注了教学方法 的优化。经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学 过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式。各种教学方法中,没有一种能很好地适应一切教学活动。也就是说,世上没有万能的教学方法。针对个性,灵活变化,因材施教才是成功的施教灵药。

2.本节设计注重了难度控制。不等式内容应用面广,可以说与其他所有内容都有交汇,历 来是高考的重点与热点。作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响。

3.本节设计关注了学生思维能力的训练。训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线。采用一题多解有助于思维的发散性及灵活性,克服思维的僵化。变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升。

人教高中必修5数学教案 篇4

教学准备

教学目标

解三角形及应用举例

教学重难点

解三角形及应用举例

教学过程

一。 基础知识精讲

掌握三角形有关的定理

利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

利用余弦定理,可以解决以下两类问题:

(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题。

二。问题讨论

思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论。

思维点拨::三角形中的三角变换,应灵活运用正、余弦定理。在求值时,要利用三角函数的有关性质。

例6:在某海滨城市附近海面有一台风,据检测,当前台

风中心位于城市O(如图)的东偏南方向

300 km的海面P处,并以20 km / h的速度向西偏北的

方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,

并以10 km / h的速度不断增加,问几小时后该城市开始受到

台风的侵袭。

一。 小结:

1、利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2。利用余弦定理,可以解决以下两类问题:

(1) 已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

3、边角互化是解三角形问题常用的手段。

三。作业:P80  闯关训练

新课标高中数学必修5教案 篇5

【学习目标】

知识与技能:理解两角差的余弦公式的推导过程及其结构特征并能灵活运用。

过程与方法:应用已学知识和方法思考问题,分析问题,解决问题的能力。

情感态度价值观: 通过公式推导引导学生发现数学规律,培养学生的创新意识和学习数学的兴趣。

。【重点】通过探索得到两角差的余弦公式以及公式的灵活运用

【难点】两角差余弦公式的推导过程

预习自学案

一、知识链接

1、 写出 的三角函数线 :

2、 向量 , 的数量积,

①定义:

②坐标运算法则:

3、 , ,那么 是否等于 呢?

下面我们就探讨两角差的余弦公式

二、教材导读

1、、两角差的余弦公式的推导思路

如图,建立单位圆O

(1)利用单位圆上的三角函数线

又OM=OB+BM

=OB+CP

=OA_____ +AP_____

=

从而得到两角差的余弦公式:

____________________________________

(2)利用两点间距离公式

如图,角 的终边与单位圆交于A( )

角 的终边与单位圆交于B( )

角 的终边与单位圆交于P( )

点T( )

AB与PT关系如何?

从而得到两角差的余弦公式:

____________________________________

(3) 利用平面向量的知识

用 表示向量 ,

=( , ) =( , )

则 。 =

设 与 的夹角为

①当 时:

=

从而得出

②当 时显然此时 已经不是向量 的夹角,在 范围内,是向量夹角的补角。我们设夹角为 ,则 + =

此时 =

从而得出

2、两角差的余弦公式

____________________________

三、预习检测

1、 利用余弦公式计算 的值。

2、 怎样求 的值

你的疑惑是什么?

________________________________________________________

______________________________________________________

探究案

例1. 利用差角余弦公式求 的值。

例2.已知 , 是第三象限角,求 的值。

训练案

一、 基础训练题

1、

2、 ¬¬¬¬¬¬¬¬¬¬¬

3、

二、综合题

--------------------------------------------------

高中数学必修五教案 篇6

教学目标

1.数列求和的综合应用

教学重难点

2.数列求和的'综合应用

教学过程

典例分析

3.数列{an}的前n项和Sn=n2-7n-8,

(1)求{an}的通项公式

(2)求{|an|}的前n项和Tn

4.等差数列{an}的公差为,S100=145,则a1+a3 + a5 + …+a99=

5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=

6.数列{an}是等差数列,且a1=2,a1+a2+a3=12

(1)求{an}的通项公式

(2)令bn=anxn ,求数列{bn}前n项和公式

7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数

8.在等差数列{an}中,a1=20,前n项和为Sn,且S10= S15,求当n为何值时,Sn有最大值,并求出它的最大值

.已知数列{an},an∈N,Sn= (an+2)2

(1)求证{an}是等差数列

(2)若bn= an-30 ,求数列{bn}前n项的最小值

0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)

(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列

(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.

11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)

12 .某商品在最近100天内的价格f(t)与时间t的

函数关系式是f(t)=

销售量g(t)与时间t的函数关系是

g(t)= -t/3 +109/3 (0≤t≤100)

求这种商品的日销售额的最大值

注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值

高中数学必修五复习知识点

1、棱柱

棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

棱柱的性质

(1)侧棱都相等,侧面是平行四边形

(2)两个底面与平行于底面的截面是全等的多边形

(3)过不相邻的两条侧棱的截面(对角面)是平行四边形

2、棱锥

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

棱锥的性质:

(1)侧棱交于一点。侧面都是三角形

(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

3、正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(2)多个特殊的直角三角形

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

高中数学学习方法

一)、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二)、适当多做题,养成良好的解题习惯。

要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三)、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

高中数学必修5教案 篇7

教学准备

教学目标

数列求和的综合应用

教学重难点

数列求和的综合应用

教学过程

典例分析

3.数列{an}的前n项和Sn=n2-7n-8,

(1) 求{an}的通项公式

(2) 求{|an|}的前n项和Tn

4.等差数列{an}的公差为 ,S100=145,则a1+a3 + a5 + …+a99=

5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为 的等差数列,则|m-n|=

6.数列{an}是等差数列,且a1=2,a1+a2+a3=12

(1)求{an}的通项公式

(2)令bn=anxn ,求数列{bn} 前n项和公式

7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数

8. 在等差数列{an}中,a1=20,前n项和为Sn,且S10= S15,求当n为何值时,Sn有最大值,并求出它的最大值

. 已知数列{an},an∈N,Sn= (an+2)2

(1)求证{an}是等差数列

(2)若bn= an-30 ,求数列{bn}前n项的最小值

0. 已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)

(1)设f(x)的图象的顶点的横坐标构成数列{an},求证 数列{an}是等差数列

(2设f(x)的图象的顶点到 x轴的距离构成数列{dn},求数列{dn}的前n项和 sn.

11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)

12 .某商品在最近100天内的价格f(t)与时间t的

函数关系式是 f(t)=

销售量 g(t)与时间t的函数关系是

g(t)= -t/3 +109/3 (0≤t≤100)

求这种商品的日销售额的最大值

注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值

高中数学必修五教案 篇8

教学目标

进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式。

教学重难点

教学重点:熟练运用定理。

教学难点:应用正、余弦定理进行边角关系的相互转化。

教学过程

一、复习准备:

1、写出正弦定理、余弦定理及推论等公式。

2、讨论各公式所求解的三角形类型。

二、讲授新课:

1、教学三角形的解的'讨论:

①出示例1:在△ABC中,已知下列条件,解三角形。

分两组练习→讨论:解的个数情况为何会发生变化?

②用如下图示分析解的情况。(A为锐角时)

②练习:在△ABC中,已知下列条件,判断三角形的解的情况。

2、教学正弦定理与余弦定理的活用:

①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦。

分析:已知条件可以如何转化?→引入参数k,设三边后利用余弦定理求角。

②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型。

分析:由三角形的什么知识可以判别?→求最大角余弦,由符号进行判断

③出示例4:已知△ABC中,,试判断△ABC的形状。

分析:如何将边角关系中的边化为角?→再思考:又如何将角化为边?

3、 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化。

三、巩固练习:

3、作业:教材P11 B组1、2题。

高中数学必修五教案 篇9

教材分析

本节课重在探究等比数列的前n项和公式的推导及简单的应用。教学中注重公式的形成过程及数学思想方法的渗透,并揭示公式的结构特征和内在联系.就知识的应用价值来看,它是从大量数学问题和现实问题中抽象出来的模型,在公式推导中所蕴含的数学思想方法在各种数列求和问题中有着广泛的应用.就内容的人文价值上看,它的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生数学的思考问题的良好载体.

教学目标

知识与技能: 掌握等比数列的前n项和公式以及推导方法;会用等比数列的前n项和公式解决有关等比数列的一些简单问题.

过程与方法: 经历等比数列前n 项和的推导过程,总结数列求和方法,体会数学中的思想方法.

情感态度与价值观:通过教材中的实际引例,激发学生学习数学的积极性及学习数学的主动性.

教学重点

等比数列的。前n项和公式推导及公式的简单应用

教学难点

等比数列的前n项和公式推导过程和思想方法

教学过程

Ⅰ、课题导入

[创设情境]

[提出问题] “国王对国际象棋的发明者的奖励”的故事

Ⅱ、讲授新课

[分析问题]如果把各格所放的麦粒数看成是一个数列,我们可以得到一个等比数列,它的首项是1,公比是2,求第一个格子到第64个格子各格所放的麦粒数总合就是求这个等比数列的前64项的和。下面我们先来推导等比数列的前n项和公式。

高中数学必修五教案 篇10

教学目标:

1。了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

2。会求一些简单函数的反函数。

3。在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

4。进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

教学重点:

求反函数的方法。

教学难点:

反函数的概念。

教学过程:

教学活动

设计意图一、创设情境,引入新课

1。复习提问

①函数的概念

②y=f(x)中各变量的意义

2。同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。

3。板书课题

由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

二、实例分析,组织探究

1。问题组一:

(用投影给出函数与;与()的图象)

(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)

(2)由,已知y能否求x?

(3)是否是一个函数?它与有何关系?

(4)与有何联系?

2。问题组二:

(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(3)函数 ()的定义域与函数()的值域有什么关系?

3。渗透反函数的概念。

(教师点明这样的函数即互为反函数,然后师生共同探究其特点)

从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。

通过这两组问题,为反函数概念的`引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。

三、师生互动,归纳定义

1。(根据上述实例,教师与学生共同归纳出反函数的定义)

函数y=f(x)(x∈A) 中,设它的值域为 C。我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) 。如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数。这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数。记作: 。考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成。

2。引导分析:

1)反函数也是函数;

2)对应法则为互逆运算;

3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

5)函数y=f(x)与x=f(y)互为反函数;

6)要理解好符号f;

7)交换变量x、y的原因。

3。两次转换x、y的对应关系

(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

4。函数与其反函数的关系

函数y=f(x)

函数

定义域

A

C

值 域

C

A

四、应用解题,总结步骤

1。(投影例题)

【例1】求下列函数的反函数

(1)y=3x—1 (2)y=x 1

【例2】求函数的反函数。

(教师板书例题过程后,由学生总结求反函数步骤。)

2。总结求函数反函数的步骤:

1° 由y=f(x)反解出x=f(y)。

2° 把x=f(y)中 x与y互换得。

3° 写出反函数的定义域。

(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?

(2)的反函数是________。

(3)(x<0)的反函数是__________。

在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。

通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。

通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。

题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。

五、巩固强化,评价反馈

1。已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

(1)y=—2x 3(xR) (2)y=—(xR,且x)

( 3 ) y=(xR,且x)

2。已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。

五、反思小结,再度设疑

本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。

(让学生谈一下本节课的学习体会,教师适时点拨)

进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。

六、作业

习题2。4 第1题,第2题

进一步巩固所学的知识。

教学设计说明

"问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。

反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。

高中数学必修五教案 篇11

教学分析

本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展。在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小。

通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用。对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程。即能用不等式或不等式组把这些不等关系表示出来。在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望。根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小。

在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上 点的一一对应关系,从数与形两方面建立实数的顺序关系。要在温故知新的基础上提高学生对不等式的认识。

三维目标

1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系。

2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围。

3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美。

重点难点

教学重点:比较实数与代数式的。大小关系,判断二次式的大小和范围。

教学难点:准确比较两个代数式的大小。

课时安排

1课时

教学过程

导入新课

思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课。

思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系。这些不等关系怎样在数学上表示出来呢让学生自由地展开联想,教师组织不等关系的相关素材,让学 生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着。这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课。

推进新课

新知探究

提出问题

1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同。怎样利用不等式研究及表示不等关系

2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。你能举出一些实际例子吗

3数轴上的任意两 点与对应的两实数具有怎样的关系

4任意两个实数具有怎样的关系用逻辑用语怎样表达这个关系

活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同。不等关系强调的是关系,可用符号“》”“》”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a》b”“a

教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系。在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容。

实例1:某天的天气预报报道,气温32 ℃,最低气温26 ℃.

实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA

实例3:若一个数是非负数,则这个数大于或等于零。

实例4:两点之间线段最短。

实例5:三角形两边之和大于第三边,两边之差小于第三边。

实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.

实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于%,蛋白质的含量p应不少于%.

教师进一步点拨:能够发现身 边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢学生很容易想到,用不等式或不等式组来表示这些不等关系。那么不等式就是用不等号将两个代数式连结起来所成的式子。如-7》-5,3+4》1+4,2x≤6,a+2≥0,3≠4,0≤5等。

教师引导学生将上述的7个实例用不等式表示出来。实例1,若用t表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|》|AB|,如下图。

|AB|+|BC|》|AC|、|AC|+|BC|》|AB|、|AB|+|AC|》|BC|.

|AB|-|BC|》|AC|、|AC|-|BC|》|AB|、|AB|-|AC|》|BC|.交换被减数与减数的位置也可以。

实例6,若用v表示速度,则v≤40 km/h.实例7,f≥%,p≥%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥%或p≥%,这是不对的但可表示为f≥%且p≥%.

对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论。

讨论结果:

(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大。

(4)对于任意两个实数a和b,在a=b,a》b,a应用示例

例1(教材本节例1和例2)

活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法。

点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握。

变式训练

1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是()

(x)》g(x) (x)=g(x)

(x)

答案:A

解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1》0,∴f(x)》g(x).

2.已知x≠0,比较(x2+1)2与x4+x2+1的大小。

解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.

∵x≠0,得x2》0.从而(x2+1)2》x4+x2+1.

例2比较下列各组数的大小(a≠b).

(1)a+b2与21a+1b(a》0,b》0);

(2)a4-b4与4a3(a-b).

活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定。本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点。

解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.

∵a》0,b》0且a≠b,∴a+b》0,(a-b)2》0.∴a-b22a+b》0,即a+b2》21a+1b.

(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)

=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]

=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].

∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),

又a≠b,∴(a-b)2》0,2a2+(a+b)2》0.∴-(a-b)2[2a2+(a+b)2]》0.

∴a4-b4》4a3(a-b).

点评:比较大小常用作差法,一般步骤是作差——变形——判断符号。变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用。

变式训练

已知x》y,且y≠0,比较xy与1的大小。

活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系。

解:xy-1=x-yy.

∵x》y,∴x-y》0.

当y》0时,x-yy》0,即xy-1》0. ∴xy》1;

当y》0时,x-yy》0,即xy-1》0.∴xy》1.

点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论。

例3建筑设计规定,民用住宅的窗户面积必须小于地板面积。但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好。试问:同时增加相等的窗户面积和地板面积, 住宅的采光条件是变好了,还是变坏了请说明理由。

活动:解题关键首先是把文 字语言转换成数学语言,然后比较前后比值的大小,采用作差法。

解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a

由于a+mb+m-ab=mb-abb+m》0,于是a+mb+m》ab.又ab≥10%,

因此a+mb+m》ab≥10%.

所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了。

点评:一般地,设a、b为正实数,且a

变式训练

已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则()

+a8》a4+a5 +a8

+a8=a4+a5 +a8与a4+a5大小不确定

答案:A

解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4

=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).

∵{an}各项都大于零,∴q》0,即1+q》0.

又∵q≠1,∴(a1+a8)-(a4+a5)》0,即a1+a8》a4+a5.

课堂小结

1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中。

2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方。鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究。

作业

习题3—1A组3;习题3—1B组2.

设计感想

1.本节设计关注了教学方法 的优化。经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学 过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式。各种教学方法中,没有一种能很好地适应一切教学活动。也就是说,世上没有万能的教学方法。针对个性,灵活变化,因材施教才是成功的施教灵药。

2.本节设计注重了难度控制。不等式内容应用面广,可以说与其他所有内容都有交汇,历 来是高考的重点与热点。作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响。

3.本节设计关注了学生思维能力的训练。训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线。采用一题多解有助于思维的发散性及灵活性,克服思维的僵化。变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升。

新课标高中数学必修5教案 篇12

一、教材分析

1、教材的地位和作用:

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标

根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点

根据教学大纲的要求我确定本节课的教学重点为:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

二、学情分析对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

二、教法分析

针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、学法指导在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学程序

本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

(一)复习引入:

1、从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______ 。(N﹡;解析式)

通过练习1复习上节内�

2、 小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为: 100,98,96,94,92 ①

3、 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为 5,10,15,20,25 ②

通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二) 新课探究

1、由引入自然的给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

an+1-an=d (n≥1)

同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1、 9 ,8,7,6,5,4,……;√ d=-1

2、 ,,,,……;√ d=

3、 0,0,0,0,0,0,……。; √ d=0

4、 1,2,3,2,3,4,……;×

5、 1,0,1,0,1,……×

其中第一个数列公差<0, 第二个数列公差>0,第三个数列公差=0

由此强调:公差可以是正数、负数,也可以是0

高中数学学习方法 篇13

一)、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二)、适当多做题,养成良好的解题习惯。

要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三)、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

高中数学必修五教案 篇14

教学目标

A、知识目标:

掌握等差数列前n项和公式的推导方法;掌握公式的运用。

B、能力目标:

(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

C、情感目标:(数学文化价值)

(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

(2)通过公式的运用,树立学生"大众教学"的思想意识。

(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。

教学重点:

等差数列前n项和的公式。

教学难点:

等差数列前n项和的公式的灵活运用。

教学方法:

启发、讨论、引导式。

教具:

现代教育多媒体技术。

教学过程

一、创设情景,导入新课。

师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。

例1,计算:1+2+3+4+5+6+7+8+9+10。

这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

二、教授新课(尝试推导)

师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。

上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n—1)d,Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。

师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。

高中必修5数学教学教案 篇15

教学目标

解三角形及应用举例

教学重难点

解三角形及应用举例

教学过程

一。 基础知识精讲

掌握三角形有关的定理

利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

利用余弦定理,可以解决以下两类问题:

(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题。

二。问题讨论

思维点拨:已知两边和其中一边的`对角解三角形问题,用正弦定理解,但需注意解的情况的讨论。

思维点拨::三角形中的三角变换,应灵活运用正、余弦定理。在求值时,要利用三角函数的有关性质。

例6:在某海滨城市附近海面有一台风,据检测,当前台

风中心位于城市O(如图)的东偏南方向

300 km的海面P处,并以20 km / h的速度向西偏北的

方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,

并以10 km / h的速度不断增加,问几小时后该城市开始受到

台风的侵袭。

一。 小结:

1.利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

2。利用余弦定理,可以解决以下两类问题:

(1) 已知三边,求三角;

(2)已知两边和它们的夹角,求第三边和其他两角。

3.边角互化是解三角形问题常用的手段。

二。作业:P80  闯关训练

高中数学必修5优秀教案 篇16

教学准备

教学目标

解三角形及应用举例

教学重难点

解三角形及应用举例

教学过程

一、基础知识精讲

掌握三角形有关的定理

利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

利用余弦定理,可以解决以下两类问题:

(1)已知三边,求三角;

(2)已知两边和它们的。夹角,求第三边和其他两角。

掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题。

二、问题讨论

思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论。

思维点拨:三角形中的三角变换,应灵活运用正、余弦定理。在求值时,要利用三角函数的有关性质。

例6:在某海滨城市附近海面有一台风,据检测,当前台

风中心位于城市O(如图)的东偏南方向

300 km的海面P处,并以20 km / h的速度向西偏北的

方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,并以10 km / h的速度不断增加,问几小时后该城市开始受到

台风的侵袭。

一、小结:

1、利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

2、利用余弦定理,可以解决以下两类问题:

(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

3、边角互化是解三角形问题常用的手段。

三。作业:P80闯关训练

新课标高中数学必修5教案 篇17

一、教材分析

1、《指数函数》在教材中的地位、作用和特点

《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。

此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。

2、教学目标、重点和难点

通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:

知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:

(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;

(2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;

(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。

(4)教学重点:指数函数的图象和性质。

(5)教学难点:指数函数的图象性质与底数a的关系。

突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。

二、教法设计

由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:

1、创设问题情景。按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。

2、强化“指数函数”概念。引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。

3、突出图象的作用。在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。

教师活动:①引导学生对课堂知识进行归纳,完成对分类讨论、数形结合等数学方法的归纳;②布置课后及拓展作业

学生活动:完成对指数函数的概念和性质的课内小结并通过课后作业进一步深化学习目标,有能力的同学完成网上调研并在下节课与同学交流我国在利用14C进行考古所取得的成果。

设计意图:教师在本环节引导学生对指数函数的知识进行梳理,深化知识与技能目标,并通过作业实现目标的巩固。

5、板书设计

考虑到板书在教学过程中发挥的功能,本节课我设计了由三个板块构成的板书,板面分配比例为2:1:1,第一大板块包含了两部分,一是指数函数的定义,二是课前准备的画有坐标系和表格的小黑板;第二板块书写了例1和例2的第一问;第三板块由学生完成例2的后两问、练习和课堂小结组成。

五、教学评价

教学评价的及时有效能调动课堂的气氛、感染学生的情绪,对课堂教学发挥着积极的推动作用,因此,我将教学评价将贯穿于本节课的每个教学环节中。例如情景导入的表达式评价、回忆指数知识的记忆评价、得出指数函数概念的归纳评价、作图时的准确性评价、解题时的规范性评价、小结时的表述性评价等。在学生交流、讨论、探究等环节注意启发学生完成知识互评、能力互评,通过多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。

当然教师会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的能力发展。以上是我对指数函数这节课的设计和思考,敬请批评指正!

人教高中必修5数学教案 篇18

教学准备

教学目标

进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式。

教学重难点

教学重点:熟练运用定理。

教学难点:应用正、余弦定理进行边角关系的相互转化。

教学过程

一、复习准备:

1、 写出正弦定理、余弦定理及推论等公式。

2、 讨论各公式所求解的三角形类型。

二、讲授新课:

1、 教学三角形的解的讨论:

① 出示例1:在△ABC中,已知下列条件,解三角形。

分两组练习→ 讨论:解的个数情况为何会发生变化?

②用如下图示分析解的情况。 (A为锐角时)

② 练习:在△ABC中,已知下列条件,判断三角形的解的情况。

2、 教学正弦定理与余弦定理的活用:

① 出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦。

分析:已知条件可以如何转化?→ 引入参数k,设三边后利用余弦定理求角。

② 出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型。

分析:由三角形的什么知识可以判别? → 求最大角余弦,由符号进行判断

③ 出示例4:已知△ABC中,,试判断△ABC的形状。

分析:如何将边角关系中的边化为角? →再思考:又如何将角化为边?

3、 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化。

三、巩固练习:

3、 作业:教材P11 B组1、2题。

高中数学必修五教案 篇19

教学目标

1、数列求和的综合应用

教学重难点

2、数列求和的综合应用

教学过程

典例分析

3、数列{an}的前n项和Sn=n2-7n-8,

(1)求{an}的通项公式

(2)求{|an|}的前n项和Tn

4、等差数列{an}的公差为,S100=145,则a1+a3 + a5 + …+a99=

5、已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=

6、数列{an}是等差数列,且a1=2,a1+a2+a3=12

(1)求{an}的通项公式

(2)令bn=anxn ,求数列{bn}前n项和公式

7、四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数

8、在等差数列{an}中,a1=20,前n项和为Sn,且S10= S15,求当n为何值时,Sn有最大值,并求出它的最大值

。已知数列{an},an∈N,Sn= (an+2)2

(1)求证{an}是等差数列

(2)若bn= an-30 ,求数列{bn}前n项的最小值

0、已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)

(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列

(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.

11 。购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)

12 。某商品在最近100天内的价格f(t)与时间t的

函数关系式是f(t)=

销售量g(t)与时间t的函数关系是

g(t)= -t/3 +109/3 (0≤t≤100)

求这种商品的日销售额的最大值

注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值

高中数学必修五教案 篇20

整体设计

教学分析

我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质。从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数。进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂。

教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题。前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值。后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫。

本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值。

根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持。

三维目标

1、通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质。掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质。培养学生观察分析、抽象类比的能力。

2、掌握根式与分数指数幂的互化,渗透“转化”的数学思想。通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理。

3、能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力。

4、通过训练及点评,让学生更能熟练掌握指数幂的运算性质。展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美。

重点难点

教学重点

(1)分数指数幂和根式概念的理解。

(2)掌握并运用分数指数幂的运算性质。

(3)运用有理指数幂的性质进行化简、求值。

教学难点

(1)分数指数幂及根式概念的理解。

(2)有理指数幂性质的灵活应用。

课时安排

3课时

教学过程

第1课时

作者:路致芳

导入新课

思路1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的。教师板书本节课题:指数函数——指数与指数幂的运算。

思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算。

推进新课

新知探究

提出问题

(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?

(2)如x4=a,x5=a,x6=a,根据上面的结论我们又能得到什么呢?

(3)根据上面的结论我们能得到一般性的结论吗?

(4)可否用一个式子表达呢?

活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题(2)的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维。

讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.

(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根。一个数的五次方等于a,则这个数叫a的五次方根。一个数的六次方等于a,则这个数叫a的六次方根。

(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根。

(4)用一个式子表达是,若xn=a,则x叫a的n次方根。

教师板书n次方根的意义:

一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整数集。

可以看出数的平方根、立方根的概念是n次方根的概念的特例。

提出问题

(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目)。

①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。

(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?

(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?

(4)任何一个数a的偶次方根是否存在呢?

活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路。

讨论结果:(1)因为±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.

(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数。总的来看,这些数包括正数,负数和零。

(3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数。0的任何次方根都是0.

(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数。

类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:

①当n为偶数时,正数a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0)。

②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示。

③负数没有偶次方根;0的任何次方根都是零。

上面的文字语言可用下面的式子表示:

a为正数:n为奇数,a的n次方根有一个为na,n为偶数,a的n次方根有两个为±na.

a为负数:n为奇数,a的n次方根只有一个为na,n为偶数,a的n次方根不存在。

零的n次方根为零,记为n0=0.

可以看出数的平方根、立方根的性质是n次方根的性质的特例。

思考

根据n次方根的性质能否举例说明上述几种情况?

活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,四次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题。

解:答案不,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为5-27,而-27的4次方根不存在等。其中5-27也表示方根,它类似于na的形式,现在我们给式子na一个名称——根式。

根式的概念:

式子na叫做根式,其中a叫做被开方数,n叫做根指数。

如3-27中,3叫根指数,-27叫被开方数。

思考

nan表示an的n次方根,式子nan=a一定成立吗?如果不一定成立,那么nan等于什么?

活动:教师让学生注意讨论n为奇偶数和a的符号,充分让学生多举实例,分组讨论。教师点拨,注意归纳整理。

〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。

解答:根据n次方根的意义,可得:(na)n=a.

通过探究得到:n为奇数,nan=a.

n为偶数,nan=|a|=a,-a,a≥0,a<0.

因此我们得到n次方根的运算性质:

①(na)n=a.先开方,再乘方(同次),结果为被开方数。

②n为奇数,nan=a.先奇次乘方,再开方(同次),结果为被开方数。

n为偶数,nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再开方(同次),结果为被开方数的绝对值。

应用示例

思路1

例求下列各式的值:

(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b)。

活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析。观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药。求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数。

解:(1)3(-8)3=-8;

(2)(-10)2=10;

(3)4(3-π)4=π-3;

(4)(a-b)2=a-b(a>b)。

点评:不注意n的奇偶性对式子nan的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用。

变式训练

求出下列各式的值:

(1)7(-2)7;

(2)3(3a-3)3(a≤1);

(3)4(3a-3)4.

解:(1)7(-2)7=-2,

(2)3(3a-3)3(a≤1)=3a-3,

(3)4(3a-3)4=

点评:本题易错的是第(3)题,往往忽视a与1大小的讨论,造成错解。

思路2

例1下列各式中正确的是()

=a

(-2)2=3-2

=1

(2-1)5=2-1

活动:教师提示,这是一道选择题,本题考查n次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答。

解析:(1)4a4=a,考查n次方根的运算性质,当n为偶数时,应先写nan=|a|,故A项错。

(2)6(-2)2=3-2,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为6(-2)2=32,故B项错。

(3)a0=1是有条件的,即a≠0,故C项也错。

(4)D项是一个正数的偶次方根,根据运算顺序也应如此,故D项正确。所以答案选D.

答案:D

点评:本题由于考查n次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心。

例2 3+22+3-22=__________.

活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式。正确分析题意是关键,教师提示,引导学生解题的思路。

解析:因为3+22=1+22+(2)2=(1+2)2=2+1,

3-22=(2)2-22+1=(2-1)2=2-1,

所以3+22+3-22=22.

答案:22

点评:不难看出3-22与3+22形式上有些特点,即是对称根式,是A±2B形式的式子,我们总能找到办法把其化成一个完全平方式。

思考

上面的例2还有别的解法吗?

活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是“+”,一个是“-”,去掉一层根号后,相加正好抵消。同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法。

另解:利用整体思想,x=3+22+3-22,

两边平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.

点评:对双重二次根式,特别是A±2B形式的`式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对A+2B±A-2B的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解。

变式训练

若a2-2a+1=a-1,求a的取值范围。

解:因为a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,

即a-1≥0,

所以a≥1.

点评:利用方根的运算性质转化为去绝对值符号,是解题的关键。

知能训练

(教师用多媒体显示在屏幕上)

1、以下说法正确的是()

A.正数的n次方根是一个正数

B.负数的n次方根是一个负数

的n次方根是零

的n次方根用na表示(以上n>1且n∈正整数集)

答案:C

2、化简下列各式:

(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.

答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。

3、计算7+40+7-40=__________.

解析:7+40+7-40

=(5)2+25?2+(2)2+(5)2-25?2+(2)2

=(5+2)2+(5-2)2

=5+2+5-2

=25.

答案:25

拓展提升

问题:nan=a与(na)n=a(n>1,n∈N)哪一个是恒等式,为什么?请举例说明。

活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n次方根的定义。

通过归纳,得出问题结果,对a是正数和零,n为偶数时,n为奇数时讨论一下。再对a是负数,n为偶数时,n为奇数时讨论一下,就可得到相应的结论。

解:(1)(na)n=a(n>1,n∈N)。

如果xn=a(n>1,且n∈N)有意义,则无论n是奇数或偶数,x=na一定是它的一个n次方根,所以(na)n=a恒成立。

例如:(43)4=3,(3-5)3=-5.

(2)nan=a,|a|,当n为奇数,当n为偶数。

当n为奇数时,a∈R,nan=a恒成立。

例如:525=2,5(-2)5=-2.

当n为偶数时,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,

即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有条件的。

点评:实质上是对n次方根的概念、性质以及运算性质的深刻理解。

课堂小结

学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上。

1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整数集。用式子na表示,式子na叫根式,其中a叫被开方数,n叫根指数。

(1)当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0)。

(2)n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示。

(3)负数没有偶次方根。0的任何次方根都是零。

2、掌握两个公式:n为奇数时,(na)n=a,n为偶数时,nan=|a|=a,-a,a≥0,a<0.

作业

课本习题组1.

补充作业:

1、化简下列各式:

(1)681;(2)15-32;(3)6a2b4.

解:(1)681=634=332=39;

(2)15-32=-1525=-32;

(3)6a2b4=6(|a|?b2)2=3|a|?b2.

2、若5

解析:因为5

答案:2a-13

+26+5-26=__________.

解析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式,

不难看出5+26=(3+2)2=3+2.

同理5-26=(3-2)2=3-2.

所以5+26+5-26=23.

答案:23

设计感想

学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式na的讲解要分n是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学。

第2课时

作者:郝云静

导入新课

思路1.碳14测年法。原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平。而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失。对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半)。引出本节课题:指数与指数幂的运算之分数指数幂。

思路2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的。这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂。

推进新课

新知探究

提出问题

(1)整数指数幂的运算性质是什么?

(2)观察以下式子,并总结出规律:a>0,

①;

②a8=(a4)2=a4=,;

③4a12=4(a3)4=a3=;

④2a10=2(a5)2=a5= 。

(3)利用(2)的规律,你能表示下列式子吗?

,,,(x>0,m,n∈正整数集,且n>1)。

(4)你能用方根的意义来解释(3)的式子吗?

(5)你能推广到一般的情形吗?

活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示。

讨论结果:(1)整数指数幂的运算性质:an=a?a?a?…?a,a0=1(a≠0);00无意义;

a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.

(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。实质上①5a10=,②a8=,③4a12=,④2a10=结果的a的指数是2,4,3,5分别写成了105,82,124,105,形式上变了,本质没变。

根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式)。

(3)利用(2)的规律,453=,375=,5a7=,nxm= 。

(4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是。

结果表明方根的结果和分数指数幂是相通的。

(5)如果a>0,那么am的n次方根可表示为nam=,即=nam(a>0,m,n∈正整数集,n>1)。

综上所述,我们得到正数的正分数指数幂的意义,教师板书:

规定:正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1)。

提出问题

(1)负整数指数幂的意义是怎样规定的?

(2)你能得出负分数指数幂的意义吗?

(3)�

讨论结果:(1)负整数指数幂的意义是:a-n=1an(a≠0),n∈N+。

(2)既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义。

规定:正数的负分数指数幂的意义是= =1nam(a>0,m,n∈=N+,n>1)。

(3)规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义。

(4)教师板书分数指数幂的意义。分数指数幂的意义就是:

正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是= =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义。

(5)若没有a>0这个条件会怎样呢?

如=3-1=-1,=6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的。因此在把根式化成分数指数时,切记要使底数大于零,如无a>0的条件,比如式子3a2=,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上。

(6)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数。

有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:

①ar?as=ar+s(a>0,r,s∈Q),

②(ar)s=ars(a>0,r,s∈Q),

③(a?b)r=arbr(a>0,b>0,r∈Q)。

我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题。

应用示例

例1求值:(1);(2);(3)12-5;(4) 。

活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,12写成2-1,1681写成234,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来。

解:(1) =22=4;

(2)=5-1=15;

(3)12-5=(2-1)-5=2-1×(-5)=32;

(4)=23-3=278.

点评:本例主要考查幂值运算,要按规定来解。在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如=382=364=4.

例2用分数指数幂的形式表示下列各式。

a3?a;a2?3a2;a3a(a>0)。

活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结。

解:a3?a=a3? =;

a2?3a2=a2? =;

a3a= 。

点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算。对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数。

例3计算下列各式(式中字母都是正数)。

(1);

(2)。

活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤。

解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;

(2)=m2n-3=m2n3.

点评:分数指数幂不表示相同因式的积,而是根式的另一种写法。有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了。

本例主要是指数幂的运算法则的综合考查和应用。

变式训练

求值:(1)33?33?63;

(2)627m3125n64.

解:(1)33?33?63= =32=9;

(2)627m3125n64= =9m225n4=925m2n-4.

例4计算下列各式:

(1)(325-125)÷425;

(2)a2a?3a2(a>0)。

活动:先由学生观察以上两个式子的特征,然后分析,化为同底。利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答。

解:(1)原式=

= =65-5;

(2)a2a?3a2= =6a5.

知能训练

课本本节练习1,2,3

【补充练习】

教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励。

1、(1)下列运算中,正确的是()

?a3=a6 B.(-a2)3=(-a3)2

C.(a-1)0=0 D.(-a2)3=-a6

(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意义的是()

A.①② B.①③ C.①②③④ D.①③④

(3)(34a6)2?(43a6)2等于()

(4)把根式-25(a-b)-2改写成分数指数幂的形式为()

A. B.

C. D.

(5)化简的结果是()

B.-a C.-9a

2、计算:(1) --17-2+ -3-1+(2-1)0=__________.

(2)设5x=4,5y=2,则52x-y=__________.

3、已知x+y=12,xy=9且x

答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8

3、解:。

因为x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.

又因为x

所以原式= =12-6-63=-33.

拓展提升

1、化简:。

活动:学生观察式子特点,考虑x的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到:

x-1= -13=;

x+1= +13=;

构建解题思路教师适时启发提示。

解:

=

=

=

= 。

点拨:解这类题目,要注意运用以下公式,

=a-b,

=a± +b,

=a±b.

2、已知,探究下列各式的值的求法。

(1)a+a-1;(2)a2+a-2;(3) 。

解:(1)将,两边平方,得a+a-1+2=9,即a+a-1=7;

(2)将a+a-1=7两边平方,得a2+a-2+2=49,即a2+ a-2=47;

(3)由于,

所以有=a+a-1+1=8.

点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值。

课堂小结

活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流。同时教师用投影仪显示本堂课的知识要点:

(1)分数指数幂的意义就是:正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是= =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义。

(2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数。

(3)有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:

①ar?as=ar+s(a>0,r,s∈Q),

②(ar)s=ars(a>0,r,s∈Q),

③(a?b)r=arbr(a>0,b>0,r∈Q)。

(4)说明两点:

①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系。

②整数指数幂的运算性质对任意的有理数指数幂也同样适用。因而分数指数幂与根式可以互化,也可以利用=am来计算。

作业

课本习题组2,4.

设计感想

本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练,巩固知识,要辅助以信息技术的手段来完成大容量的课堂教学任务。

第3课时

作者:郑芳鸣

导入新课

思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数。并且知道,在有理数到实数的扩充过程中,增添的数是无理数。对无理数指数幂,也是这样扩充而来。既然如此,我们这节课的主要内容是:教师板书本堂课的课题〔指数与指数幂的运算(3)〕之无理数指数幂。

思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本节课的课题。

推进新课

新知探究

提出问题

(1)我们知道2= 213 56…,那么,, 2, 21,…,是2的什么近似值?而,, 3, 22,…,是2的什么近似值?

(2)多媒体显示以下图表:同学们从上面的两个表中,能发现什么样的规律?

2的过剩近似值

的近似值

339 89

635 328

851 808

3 872 62

22 618 643

214 524 602

213 6 518 332

213 57 517 862

213 563 517 752

… …

的近似值

2的不足近似值

269 694

669 973

171 039

305 174 2

461 907 21

508 928 213

516 765 213 5

517 705 213 56

517 736 213 562

… …

(3)你能给上述思想起个名字吗?

(4)一个正数的无理数次幂到底是一个什么性质的数呢?如,根据你学过的知识,能作出判断并合理地解释吗?

(5)借助上面的结论你能说出一般性的结论吗?

活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:

问题(1)从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向。

问题(2)对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联。

问题(3)上述方法实际上是无限接近,最后是逼近。

问题(4)对问题给予大胆猜测,从数轴的观点加以解释。

问题(5)在(3)(4)的基础上,推广到一般的情形,即由特殊到一般。

讨论结果:(1),, 2, 21,…这些数都小于2,称2的不足近似值,而,, 3, 22,…,这些数都大于2,称2的过剩近似值。

(2)第一个表:从大于2的方向逼近2时,就从,,, 3, 22,…,即大于的方向逼近。

第二个表:从小于2的方向逼近2时,就从,,, 2, 21,…,即小于的方向逼近。

从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面从,,, 2, 21,…,即小于的方向接近,而另一方面从,,, 3, 22,…,即大于的方向接近,可以说从两个方向无限地接近,即逼近,所以是一串有理数指数幂,,, 2, 21,…,和另一串有理数指数幂,,, 3, 22,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示的点靠近,但这个点一定在数轴上,由此我们可得到的结论是一定是一个实数,即<<< 2< 21<…< <…< 22< 3<<<

充分表明是一个实数。

(3)逼近思想,事实上里面含有极限的思想,这是以后要学的知识。

(4)根据(2)(3)我们可以推断是一个实数,猜测一个正数的无理数次幂是一个实数。

(5)无理数指数幂的意义:

一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数。

也就是说无理数可 我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂。

提出问题

(1)为什么在规定无理数指数幂的意义时,必须规定底数是正数?

(2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢?

(3)你能给出实数指数幂的运算法则吗?

活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳。

对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明。

对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂aα(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通。

对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了。

讨论结果:(1)底数大于零的必要性,若a=-1,那么aα是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂aα是一个确定的实数,就不会再造成混乱。

(2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂。类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则:

①ar?as=ar+s(a>0,r,s都是无理数)。

②(ar)s=ars(a>0,r,s都是无理数)。

③(a?b)r=arbr(a>0,b>0,r是无理数)。

(3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂。

实数指数幂的运算性质:

对任意的实数r,s,均有下面的运算性质:

①ar?as=ar+s(a>0,r,s∈R)。

②(ar)s=ars(a>0,r,s∈R)。

③(a?b)r=arbr(a>0,b>0,r∈R)。

应用示例

例1利用函数计算器计算。(精确到)

(1);(2);(3);(4) 。

活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数,再按xy键,再按幂指数,最后按=,即可求得它的值;

对于(2),先按底数,再按xy键,再按负号-键,再按3,最后按=即可;

对于(3),先按底数,再按xy键,再按3÷4,最后按=即可;

对于(4),这种无理指数幂,可先按底数3,其次按xy键,再按键,再按3,最后按=键。有时也可按2ndf或shift键,使用键上面的功能去运算。

学生可以相互交流,挖掘计算器的用途。

解:(1)≈;(2)≈;(3) ≈;(4) ≈

点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n位,只需看第(n+1)位能否进位即可。

例2求值或化简。

(1)a-4b23ab2(a>0,b>0);

(2)(a>0,b>0);

(3)5-26+7-43-6-42.

活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律。

解:(1)a-4b23ab2= =3b46a11 。

点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示。

高中数学必修五教案 篇21

教学目标

A、知识目标:

掌握等差数列前n项和公式的推导方法;掌握公式的运用。

B、能力目标:

(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

C、情感目标:(数学文化价值)

(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

(2)通过公式的运用,树立学生"大众教学"的思想意识。

(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的。心理体验,产生热爱数学的情感。

教学重点:

等差数列前n项和的公式。

教学难点:

等差数列前n项和的公式的灵活运用。

教学方法:

启发、讨论、引导式。

教具:

现代教育多媒体技术。

教学过程

一、创设情景,导入新课。

师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。

例1,计算:1+2+3+4+5+6+7+8+9+10。

这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

二、教授新课(尝试推导)

师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。

上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n—1)d,Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。

师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。

高中数学必修5教案 篇22

教学准备

教学目标

进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式。

教学重难点

教学重点:熟练运用定理。

教学难点:应用正、余弦定理进行边角关系的相互转化。

教学过程

一、复习准备:

1. 写出正弦定理、余弦定理及推论等公式。

2. 讨论各公式所求解的三角形类型。

二、讲授新课:

1. 教学三角形的解的讨论:

① 出示例1:在△ABC中,已知下列条件,解三角形。

分两组练习→ 讨论:解的个数情况为何会发生变化?

②用如下图示分析解的情况。 (A为锐角时)

② 练习:在△ABC中,已知下列条件,判断三角形的解的情况。

2. 教学正弦定理与余弦定理的活用:

① 出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦。

分析:已知条件可以如何转化?→ 引入参数k,设三边后利用余弦定理求角。

② 出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型。

分析:由三角形的什么知识可以判别? → 求最大角余弦,由符号进行判断

③ 出示例4:已知△ABC中,,试判断△ABC的形状。

分析:如何将边角关系中的边化为角? →再思考:又如何将角化为边?

3. 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化。

三、巩固练习:

3. 作业:教材P11 B组1、2题。

18 3608854
");