数学必修的高中教学设计范例【汇集8篇】

网友 分享 时间:

【请您参阅】下面供您参考的“数学必修的高中教学设计范例【汇集8篇】”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

数学必修的高中教学设计【第一篇】

首先,可以联系实际生活。数学知识在生活中有着广泛的应用,与实际生活有着广泛的联系,在进行课堂导入设计时,教师可以联系学生的实际生活,激发学生的好奇心。例如在学习抛物线的知识时,可以这样导入:让学生回想一下打篮球的情景,由于场地限制,在课堂上可以用乒乓球代替篮球,做投篮动作,让学生仔细观察篮球(乒乓球)落地时的轨迹,在学生积极参讨论时,引入抛物线的知识。在导入中联系实际生活,不仅能够激发学生的兴趣,并且能够拉近学生与数学之间的距离。

其次,教师可以利用数学史进行导入。数学教材中很多知识都与数学史相关,学生对这部分知识充满兴趣,因此在教学过程中,教师设计课堂导入时可以从这一点入手,先通过提问或者介绍的方式,让学生了解数学史上的重大事件和重要人物等,引起学生的敬佩和仰慕之情,然后引入相关的数学知识。兴趣是最好的老师,在学生的期待下展开数学教学,无疑会提高课堂教学效率。课堂导入的方式有很多种,在具体的操作环节,教师要注意导入方式的多样性,才能更好地激发学生的兴趣,在高中数学教学中教师要根据实际情况进行合理选择使用。

做好课堂提问设计。

首先,教师要精心设计问题。提问的目的是为了激发学生的兴趣和思维,因此,教师提问的问题不能是单调、重复的,而应该是具有启发性和针对性,能够激发学生的思考,引导学生进行步步深入。最重要的是,教师提出的问题要符合学生的知识水平和认知能力,教师不仅应该了解教材,并且要全面了解学生,这样才能使提出的问题符合学生的需要。学生的数学水平是不同的,接受能力也有差异,因此教师要注意提出问题的层次性,并针对不同水平的学生设计不同难度的问题,促进每个学生获得进步和发展。

其次,课堂提问的方式要多样化。如同教学方式需要多样化一样,提问的方式也要具有多样化的特点,这样才能更好地激发学生兴趣,达到教学目的,否则,无论教师设计的问题多么巧妙,学生也会感到厌烦。根据问题的内容和学生实际情况,提问可以是直接问答;可以是导思式;可以教师提问、学生回答;也可以是学生提问、教师回答。在教学过程中教师要注意培养学生的问题意识,鼓励学生自己提出问题,问题是思考的开端,对于学生来说提出问题比解决问题更重要,因此,教师要为学生创造机会,让学生在认真阅读教材的基础上,根据自己的理解提出不懂的问题。提出的问题教师可以进行点拨,让学生思考,也可以组织学生进行讨论,培养学生分析问题和解决问题的能力。

数学必修的高中教学设计【第二篇】

本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。

数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。

教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。

加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。

本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。

《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,

位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。

在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的'关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”

学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。

正弦定理和余弦定理(约3课时)

应用举例(约4课时)

实习作业(约1课时)

1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。

2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。

数学必修的高中教学设计【第三篇】

《囚绿记》是新课程必修2第一单元中的1篇散文,教授这篇课文是以把握作者情感脉络为“经”线,以探究文章主旨为“纬”线,在经纬线索中体会散文的魅力,培养学生开放性的思维。

1、知识与能力:

把握作者情感脉络,进而分析文章主旨。

2、过程与方法:

通过诵读来把握作者情感脉络。

通过点拨来引导学生分析文章主旨。

3、情感态度与价值观:

培养学生的审美能力,以及学生开放性的思维能力。

1、引用顾城的《一代人》。

2、调动学生想象题目“囚绿”的含义。

学生快速浏览课文,并找出有关表达作者情感的语句。

学生勾画出有关表现作者情感的语句。

让学生在短时间内了解课文大致意思。

1、学生探究作者喜欢绿色的原因,重点研习课文第五至七段,并通过朗读体会作者的情感。

2、引导学生分析作者对“绿”的情感变化,重点研习课文第八至十二段,并朗读体会。

(教师点拨学生分析具体语句,并指导学生的朗读。)

(展示课件。)

3、明确:作者喜欢绿是因为绿是生命、希望、慰安、快乐,绿色宝贵啊!

示例:“我怀念着绿色,如同涸辙的鱼盼等着雨水!”这句话写出了作者焦急的盼等着绿的心情,而绿对作者来说犹如涸辙里的鱼期盼雨水一样,是一种生命、希望。

(学生朗读,体会那样一种焦急盼望的心情。由一人读进而全班齐读。)

4、明确:因为喜爱绿所以想要“囚绿”,但“囚绿”带来的并不是欢喜,而是恼怒。

示例:“我为了这永远向着阳光生长的植物不快,因为它损害了我的自尊心。” 这些语句中我们可以体会到作者内心的矛盾痛苦,“损害了我的自尊心”说明这绿的执著深深刺伤了作者,他的满腔热情化为泡影,所以喜欢变成了恼怒。

(学生朗读,学生互评。)

培养学生欣赏能力,尊重个性阅读。

重视指导学生朗读,进而体会作者的情感变化。

通过朗读品味散文艺术之美,全体师生共同分享其中韵味。

通过分析囚绿的过程,进而探究其中包含的`现实意义。

学生谈启发。

示例:常春藤的执著告诉我们任何时候不要放弃。

作者“囚绿”并没有带来快乐,一时的自私并不能带来长久的愉悦。 充分调动学生的积极性,培养他们开放性的思维能力。

联系背景,作者想要通过“囚绿”给我们带来怎样的启示。重点研习文章最后两段。

(教师点拨学生分析重点语句,并指导学生的朗读。)

(课件展示。)

明确:文中提示性语句是“卢沟桥事件发生了”,因此本文写作的大背景是在中华民族存亡的危机关头。“囚绿”之“绿”其实寓意深刻,它象征了不屈服于黑暗,渴望自由、阳光的中国人。

(学生朗读最后两段。) 在扩展延伸的基础上深入挖掘文章的主旨。

通过这样的思路告诉同学们,同一个人面对同1篇文章,放在不同的背景中可以有不同的启示。背景知识对于我们把握文章主旨是很重要的。

站在21世纪的我们从《囚绿记》中又收获了新的启示,这也是文章生命力所在。而70年前处在国家危亡的关键时刻,《囚绿记》既是血泪之作,又是前行的动力所在,这是陆蠡留给后人的财富。

绿 囚 国

数学必修的高中教学设计【第四篇】

进一步掌握直线方程的各种形式,会根据条件求直线的方程。

过程与方法。

在分析问题、动手解题的过程中,提升逻辑思维、计算能力以及分析问题、解决问题的能力。

情感、态度与价值观。

在学习活动中获得成功的体验,增强学习数学的兴趣与信心。

二、教学重难点。

重点根据条件求直线的方程。

难点根据条件求直线的方程。

(一)课堂导入。

直接点明最近学习了直线方程的多种形式,这节课将练习求直线的方程。

(二)回顾旧知。

带领学生复习回顾直线斜率的求法,以及直线方程的点斜式、两点式和一般式。

为了加深学生的运用和理解,继续引导学生思考,是否有其他解题思路。预设大部分学生能够想到用点斜式进行计算。教师肯定学生想法并组织学生动手计算,之后请学生上黑板板演。

预设学生有多种解题方法,如ab、ac所在直线方程用两点式求解,bc所在直线方程用点斜式求解。

学生板演后教师讲解,点明不足,提示学生,计算结束后要记得将所求得方程整理为直线方程的一般式。

师生总结解题思路:求直线所在方程时,若给出两点坐标,在符合条件的情况下,可直接套用公式,也可利用点斜式进行求解,注意一题多解的情况。

(四)小结作业。

小结:学生畅谈收获。

作业:完成课后相应练习题,根据已知条件求直线的方程。

数学必修的高中教学设计【第五篇】

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.

等比数列性质请同学们类比得出.

方法规律。

1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题.方程观点是解决这类问题的基本数学思想和方法.

2、判断一个数列是等差数列或等比数列,常用的方法使用定义.特别地,在判断三个实数。

a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)。

3、在求等差数列前n项和的最大(小)值时,常用函数的思想和方法加以解决.

示范举例。

例1:(1)设等差数列的`前n项和为30,前2n项和为100,则前3n项和为.

(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.

例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数.

例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项.

数学必修的高中教学设计【第六篇】

本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。

本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。

更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。

因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。

二、教学目标定位。

为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标:。

一、知识与技能。

理解合力、分力、力的合成的概念理解力的合成本质上是从等效的角度进行力的替代。

探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力。

二、过程与方法。

通过学习合力和分力的概念,了解物理学常用的方法——等效替代法。

通过实验探究方案的设计与实施,体验科学探究的过程。

三、情感态度与价值观。

培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯。

培养认真细致、实事求是的实验态度。

根据以上分析确定本节课的重点与难点如下:

一、重点。

合力和分力的概念以及它们的关系。

实验探究力的合成所遵循的法则。

二、难点。

平行四边形定则的理解和运用。

三、重、难点突破方法——教法简介。

本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。

因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。体现学生主体性。

实验归纳法的步骤如下。这样设计让学生不仅能知其然,更能知其所以然,这也是本堂课突破重点和难点的重要手段。

本堂课在教法上采用启发式教学——通过设置问题,引导启发学生,激发学生思维。体现教师主导作用。

四、教学过程设计。

采用六环节教学法,教学过程共有六个步骤。

教学过程第一环节、创设情景导入新课:

第二环节、新课教学:

展示合力与分力以及力的合成的概念,强调等效替代法。举例说明等效替代法是一种重要的物理方法。

第三环节、合作探究:

首先,教师展示实验仪器,让学生思考如何设计实验,,如何进行实验呢?学生面对器材可能会觉得无从下手。再次设置问题引导学生思维,让学生面对仪器分组讨论以下四个问题。

问题1要用动画辅助说明。在问题2中,教师要强调结点的问题,用动画说明。问题3中,直观简洁的描述力必须用力的图示,用图片说明。问题4让学生注意测力计的使用,减小实验误差。通过对这四个问题的讨论,再结合多媒体动画的展示,使学生对探究的步骤清晰明了。

然后,学生分组实验,合作探究,记录合力与两分力的大小和方向,作出力的图示。实验完成后请学生展示实验结果,应该立即可得出结论一:比较分力与合力的大小,可得互成角度的两个力的合成,不能简单地利用代数方法相加减.

那合力与分力到底满足什么关系呢?

此时要引导学生思考:既然从数字上找不到关系,哪可不可以从几何上找找关系呢?学生会立即猜想出o、a、c、b像是一个平行四边形的四个顶点,ob可能是这个平行四边形的对角线.哪么猜想是否正确呢?亲自实践才有发言权,学生动手作图:以oa、oc为邻边作平行四边形oacb,看平行四边形的对角线与ob是否重合。

学生作图后发现对角线与合力很接近。教师说明实验的误差是不可避免的,科学家经过很多次的、精细的实验,最后确认对角线的长度、方向,跟合力的大小、方向一致,说明对角线就表示f1和f2的合力.由此得到结论二:力的合成法则——平行四边形定则。

进入。

第四环节:归纳总结。

将本文的word文档下载到电脑,方便收藏和打印。

数学必修的高中教学设计【第七篇】

1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;。

2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的'能力;。

归纳——猜想——证明的数学研究方法;。

3、数学思想:培养学生分类讨论,函数的数学思想。

重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;。

难点:等比数列的性质的探索过程。

教学过程:

1、问题引入:

前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?

(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(第一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)。

2、新课:

1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。

师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

公式的推导:(师生共同完成)。

若设等比数列的公比为q和首项为a1,则有:

方法一:(累乘法)。

3)等比数列的性质:

下面我们一起来研究一下等比数列的性质。

通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。

问题4:如果{an}是一个等差数列,它有哪些性质?

(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:

3、例题巩固:

例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。

答案:1458或128。

例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3…a20=_10____.

(本题为开放题,没有唯一的答案,如对于}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)。

1、小结:

今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习。

我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。

2、作业:

p129:1,2,3。

1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。

2、教学设计过程:本节课主要从以下几个方面展开:

1)通过复习等差数列的定义,类比得出等比数列的定义;。

2)等比数列的通项公式的推导;。

3)等比数列的性质;。

有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧。

知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。

在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。

在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。

通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。

等比性质的研究是本节课的高潮,通过类比。

关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。

数学必修的高中教学设计【第八篇】

高中数学教学应鼓励学生用数学去解决问题,甚至去探索一些数学本身的问题。教学中,教师不仅要培养学生严谨的逻辑推理能力、空间想象能力和运算能力,还要培养学生数学建模能力与数据处理能力,加强在“用数学”方面的教育。最好的方式就是用多媒体电脑和诸如《几何画板》、《几何画王》、《几何专家》等工具软件,为学生创设数学实验情境。例如,在上“棱柱和异面直线”课时,我们指导学生用硬纸制作“长方体”和“正三棱柱”等模型。教师用《几何画板》设计并创作“长方体中的异面直线”课件,引导学生利用自己制作的“长方体”模型和上述课件,思考以下问题:“长方体中所有体对角线(4条)与所有面对角线(12条)共组成多少对异面直线?”、“长方体中所有体对角线(4条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有棱(12条)之间相互组成多少对异面直线?”、“长方体所有面对角线(12条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有面对角线(12条)之间相互组成多少对异面直线?”。然后由学生独立进行数学实验,探讨上述问题。

此外,教师还要根据数学思想发展脉络,充分利用实验手段尤其是运用现代教育技术,创设教学实验情景、设计系列问题、增加辅助环节,有助于引导学生通过操作、实践,探索数学定理的证明和数学问题的解决方法,让学生亲自体验数学建模过程,培养学生的数学创新能力和实践能力,提高数学素养。

巧设情境,增加学生的投入感。

为了构建生动活泼富有个性的数学课堂,我把创设情境,激发学生的学习兴趣当成数学教学的重头戏,使之成为数学课的一道亮丽的风景。《数学课程标准》强调数学课堂教学必须注意从学生熟悉的生活情境和感兴趣的事物出发,使学生有更多的机会从周围熟悉的事物中学习数学,理解数学,让学生感受到数学就在他们周围。因此,我从学生已有的生活经验出发,创设有趣的教学情境,强化学生的感性认识,丰富学生的学习过程,引导学生在情境中观察、操作、交流,感受数学与日常生活的密切联系,感受数学在生活中的作用,加深对数学的理解,并运用数学知识解决现实生活中的问题。如《课程标准》在综合实践的教学建议部分提供了这样一个案例:

要求学生统计自己家庭一周内丢弃的塑料袋个数,并依据所分享的“数学必修的高中教学设计范例【汇集8篇】”,老师也把自己的统计结果融入其中);(4)统计分析(引导学生根据数据对全班一周丢弃塑料袋情况用不同的算法进行描述和评价);(5)结合问题情境深入领会有关概念(如平均数、中位数、众数等)的含义,并通过问题的层层深入让学生进一步感受不同统计量来表示同一问题的必要性;(6)问题自然延伸(计算这些袋对土地造成的污染,先估计一个袋的污染,然后通过多种方式计算推及到一周呢?一年呢?全校同学的家庭呢?照此速度要多久就会污染整个学校呢?)。由此例可以看出,这种模式的一个关键点就是围绕着学生日常生活来展开的,由学生身边的事所引出的数学问题,使学生体会到数学与生活的紧密和谐关系,朴素的问题情境自然让学生产生一种情感上的亲和力和感召力,可以让他们真正应用数学,并引导他们学会做事。

22 2942231
");