高二数学教案(汇总5篇)
【阅读指引】阿拉题库网友为您分享整理的“高二数学教案(汇总5篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
高二数学教案【第一篇】
第一课时
一、课 题
分析计数原理和分步计数原理(1)
二、教学目标
1、知识传授目标:正确理解和掌握加法原理和乘法原理
2、能力培养目标:能准确地应用它们分析和解决一些简单的问题
3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力
三、教学重、难点
1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论.
2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同.
四、教学方法
启发式教学法
五、教学手段
多媒体课件.
六、教学过程
1.新课导入
随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。
排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.
2.新课
我们先看下面两个问题.
(l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?
板书:图
因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法.
一般地,有如下原理:
加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,??,在第n类办法中有mn种不同的方法.那么完成这件事共有N=m1十m2十?十mn种不同的方法.
(2) 我们再看下面的问题:
由A村去B村的道路有3条,由B村去C村的道路有2条.从A村经B村去C村,共有多少种不同的走法?
板书:图
这里,从A村到B村有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又有2种不同的走法.因此,从A村经B村去C村共有 3X2=6种不同的走法.
一般地,有如下原理:
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,??,做第n步有mn种不同的方法.那么完成这件事共有N=m1 m2?mn种不同的方法.
例1 书架上层放有6本不同的数学书,下层放有5本不同的语文书.
1)从中任取一本,有多少种不同的取法?
2)从中任取数学书与语文书各一本,有多少的取法?
解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法.根据加法原理,得到不同的取法的种数是6十5=11.
答:从书架L任取一本书,有11种不同的取法.
(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法.根据乘法原理,得到不同的取法的种数是 N=6X5=30.
答:从书架上取数学书与语文书各一本,有30种不同的方法.
练习: 一同学有4枚明朝不同古币和6枚清朝不同古币
1)从中任取一枚,有多少种不同取法?2)从中任取明清古币各一枚,有多少种不同取法?
例2(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数?
(2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数?
(3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数?
解:要组成一个三位数可以分成三个步骤完成:第一步确定百位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复,
这仍有5种选法,第三步确定个位上的数字,同理,它也有5种选法.根据乘法原理,得到可以组成的三位数的个数是N=5X5X5=125. 答:可以组成125个三位数.
练习:
1、从甲地到乙地有2条陆路可走,从乙地到丙地有3条陆路可走,又从甲地不经过乙地到丙地有2条水路可走.
(1)从甲地经乙地到丙地有多少种不同的走法?
(2)从甲地到丙地共有多少种不同的走法?
2.一名儿童做加法游戏.在一个红口袋中装着2O张分别标有数1、2、?、19、20的红卡片,从中任抽一张,把上面的数作为被加数;在另一个黄口袋中装着10张分别标有数1、2、?、9、1O的黄卡片,从中任抽一张,把上面的数作为加数.这名儿童一共可以列出多少个加法式子?
3.题2的变形
4.由0-9这10个数字可以组成多少个没有重复数字的三位数
小结:要解决某个此类问题,首先要判断是分类,还是分步?分类时用加法,分步时用乘法
其次要注意怎样分类和分步,以后会进一步学习
七、练习设计
1.(口答)一件工作可以用两种方法完成.有 5人会用第一种方法完成,另有4人会用第二种方法完成.选出一个人来完成这件工作,共有多少种选法?
2.在读书活动中,一个学生要从 2本科技书、 2本政治书、 3本文艺书里任选一本,共有多少种不同的。选法?
3.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)展开后共有多少项?
4.从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通.从甲地到丙地共有多少种不同的走法?
5.一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同.
(1)从两个口袋内任取一个小球,有多少种不同的取法?
(2)从两个口袋内各取一个小球,有多少种不同的取法?
八、板书设计
九、教学反思
第二课时
一、课 题
分析计数原理和分步计数原理(2)
二、教学目标
1、知识传授目标:正确理解和掌握加法原理和乘法原理
2、能力培养目标:能准确地应用它们分析和解决一些简单的问题
3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力
三、教学重、难点
1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论.
2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同.
四、教学方法
启发式教学法
五、教学手段
多媒体课件.
六、教学过程
1. 由学生阅读引言,明确任务,激发兴趣。
由学生感兴趣的乒乓球比赛提出的问题引出学习本章的必要性,明确研究计数方法是本章内容的独特性,从应用的广泛看学好本章知识的重要性。
2. 学习理解分类计数原理
给出问题,配图分析,讲清坐火车与坐汽车两类办法均可,每类中任一种办法都可以独立的把从甲地到乙地这件事办好。 变式1:若甲地到乙地一天中还有4班轮船可乘,那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同走法? 变式2:若完成一件事,有n类办法。在第1类办法中有m1种不同办法,在第2类办法中有m2种不同方法,?? ,在第n类办法中有mn种不同方法,每一类中的每一种方法均可完成这件事,那么完成这件事共有多少种不同方法?
解答以上问题,水到渠成,顺着变式2的解,不难由学生归纳得出分类计数原理(又称办法原理).
3. 学习理解分步计数原理
出示问题,配上插图,引导分析,组织讨论,强调分步。
可用多媒体配上不同颜色闪现六种不同走法。
由学生模仿分类计数原理归纳得出分步计数原理(又叫乘法原理).
4.
5.
6. 讲解例1 讲解增例 例:满足A引导学生分析解答,注意区分办法的分类与分步。 ?B=?1,2?的集合A、B共有多少组?
?1,2?的子集:?,?1?,?1?,?1,2?,但不是随便两个子集搭配都行,本题尤如含A、B两元数的不定方
?1,2?得1组解; 启发引导学生作出下列两种分析。 分析一:A、B均是程,其全部解分为四类: 1. 当A=?时,只有B=
2. 当A=
3. 当A=
4. 当A=?1?时,B=?2?或?1,2?,得2组解; ?2?时,B=?1?或?1,2?,得2组解 ?1,2?时,B=?或?1?或?2?或?1,2?,得4组解。
根据加法原理,共有1+2+2+4=9组解。
分析二:设A、B为两个“口袋”,需将两种元素(1或2)装入,任一元素至少装入一个袋中,分两步可办好此事:第1步装“1”,可装入A不可装入B,也可装入B不装A,还可以既装入A又装入B,有3种装法;第2步装“2”,同样有3种装法。根据乘法原理共得了3?3=9种装法,即原题共有9组解。
6.课堂练习
教科书第86页练习第1、2题,习题第1题。
7.知识小结
回顾两个原理内容,强调区别在于办事办法分类与分步。
七、练习设计
1. 教科书习题第2题。
2. 各编一道用两个原理解答的问题并解答。
八、板书设计
九、教学反思
第三课时
一、课 题
分析计数原理和分步计数原理(3)
二、教学目标
1. 进一步理解两个基本原理。
2. 会运用两个基本原理分析解答简单的应用题。
三、教学重、难点
1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论.
2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同.
四、教学方法
启发式教学法
五、教学手段
多媒体课件.
六、教学过程
1. 两个基本原理是本章重要的基本理论,通过运用,进一步理解两个基本原理,进一步掌握分类思考与分步思考的方法。
2. 运用两个基本原理时,应强调以下重点。
分类计数原理中的“做一件事,完成它可以有n类办法”,是对完成这件事的所有方法的一个分类。分类时,首先要根据问题的特点确定一个分类的标准,然后在确定的分类标准下进行分类,其次分类时要注意满足一个基本要求:完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法是不同的方法。只有满足这些条件,才能用分类计数原理。 分步计数原理中的“做一件事,完成它需要分成n个步骤”,是指完成这件事的任何一种方法,都要分成n个步骤。分布时,首先要根据问题的特点确定一个分布的标准,其次分步时还要注意满足完成一件事必须并且只需连续完成这n个步骤后这件事才算完成。只有满足这些条件,才能用分步计数原理。
这些思想观点,应在教学中向学生详细阐明。
1. 理论复习
说说你对两个基本原理的理解。注:这样的问题,答对的标准比较宽松。只要学生解答对大概的主要的意思,就应表扬;不仅原理叙述准确,并且加上自己的正确的理解,更应当受到称赞。目的只有一个,重在理解。这符合素质教育的要求。
2. 应用举例
(1) 增例:平面上的直线l上的三点P1、P2、P3及l 外一点A,过这四点中的两点连直线,可连得多少条不同的直线? 学生议论,形成共识:以直线过不过A点为分类标准,过A的3条,不过A的1条,由分类计数原理得可连不同的直线3+1=4条。
变式1:在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?
变式2:在1~20共20个整数中取两个数相加,使其和大于20的不同取法共有多少种?
注:取a+b与取b+a是同一种取法。
变式1思路:分类标准为两家数的奇偶性,第一类,偶偶相加,由分步计数原理得10×9=90种取法,第二类,奇奇相加,也有10×9=90种取法。根据分类计数原理共有90+90=180种不同取法。
变式2思路:分类标准一,固定小加数。小加数为1时,大加数只有20这1种取法;小加数为2时,大加数有19或20两种取法;小加数为3时,大加数为18,19或20有3种取法?小加数为10时,大加数为11,12,? ,20共10种取法;小加数为11时,大加数有9种取法?小加数取19时,大加数为1种取法。由分类计数原理,得不同取法共有1+2+?+9+10+9+?+2+1=100种。
分类标准二,固定和的值。有和为21,22,?,39,这几类,依次有取法10,9,9,8,8,?,2,2,1,1种。由分类计数原理得不同取法共有10+9+9+?+2+2+1+1=100种。
(2) 指导学生阅读例2、例3,培养学生阅读理解能力。
组织学生议论这两例的共同点与不同点。
共同点:都要分布计数。
不同点:例2分四步,每步确定一个键盘上的数码,并且数码可重复使用;例3分两步,每步安排一个工人值班,第1步排定的工人,第2步不再排此人。
变式1:集合A={a,b,c},B={1,2},问A到B的不同映射f共有多少个?B到A的不同映射g共有多少个?
变式2:用数字1,2,3可写出多少个小于1000的正整数?
变式1思路:分3步,分别以a,b,c为原象,确定它们的象,f共有2×2×2=8个,同样g有3=9个。
变式2思路:有分类,又有分步。分类是一位数,二位数,三位数共三类,再分步确定各位上的数字,共可写正整数3+3+3=39个。
3. 归纳小结
分类计数原理与分步计数原理,回答的都是有关一件事的不同方法种数的问题,区别在于:分类计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只完成做这件事的一个步骤,只有各个步骤中的方法都完成才算做完这件事。
注:本节安排了较多的应用问题,可用多媒体辅助教学,从出示问题,分析讨论,所给出解答。要注意从时间上保证分析和解决问题的实施,保证重点、难点的突破。
4. 课堂练习
教科书第86页练习第3、4、5题,习题第3、6题。
七、练习设计
教科书习题第4、5题。
八、板书设计
九、教学反思
高二数学教案【第二篇】
●三维目标:
(1)知识与技能:
掌握归纳推理的技巧,并能运用解决实际问题。
(2)过程与方法:
通过“自主、合作与探究”实现“一切以学生为中心”的理念。
(3)情感、态度与价值观:
感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。
●教学重点:
归纳推理及方法的总结。
●教学难点:
归纳推理的含义及其具体应用。
●教具准备:
与教材内容相关的资料。
●课时安排:
1课时
●教学过程:
一。问题情境
(1)原理初探
①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!”
②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在?
③探究:他是怎么发现“杠杆原理”的?
从而引入两则小典故:
A:一个小孩,为何轻轻松松就能提起一大桶水?
B:修筑河堤时,奴隶们是怎样搬运巨石的?
高二数学教案【第三篇】
课题:命题
课时:001
课型:新授课
教学目标
1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;
2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;
3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
教学重点与难点
重点:命题的概念、命题的构成
难点:分清命题的条件、结论和判断命题的真假
教学过程
一、复习回顾
引入:初中已学过命题的知识,请同学们回顾:什么叫做命题?
二、新课教学
下列语句的表述形式有什么特点?你能判断他们的真假吗?
(1)若直线a∥b,则直线a与直线b没有公共点.
(2)2+4=7.
(3)垂直于同一条直线的两个平面平行.
(4)若x2=1,则x=1.
(5)两个全等三角形的面积相等.
(6)3能被2整除.
讨论、判断:学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
抽象、归纳:
1、命题定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.
命题的定义的要点:能判断真假的陈述句.
在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.
例1:判断下列语句是否为命题?
(1)空集是任何集合的子集.
(2)若整数a是素数,则是a奇数.
(3)指数函数是增函数吗?
(4)若平面上两条直线不相交,则这两条直线平行.
(5)=-2.
(6)x>15.
让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.
解略。
引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?
通过对此问的思考,学生将清晰地认识到定理、推论都是命题.
过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。紧接着提出问题:命题是否也是由条件和结论两部分构成呢?
2、命题的构成――条件和结论
定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.
例2:指出下列命题中的条件p和结论q,并判断各命题的真假.
(1)若整数a能被2整除,则a是偶数.
(2)若四边行是菱形,则它的对角线互相垂直平分.
(3)若a>0,b>0,则a+b>0.
(4)若a>0,b>0,则a+b<0.
(5)垂直于同一条直线的两个平面平行.
此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。
此例中的命题(5),不是“若P,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.
解略。
过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.
3、命题的分类
真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.
假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.
强调:
(1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.
(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。
判断一个数学命题的真假方法:
(1)数学中判定一个命题是真命题,要经过证明.
(2)要判断一个命题是假命题,只需举一个反例即可.
例3:把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:
(1)面积相等的两个三角形全等。
(2)负数的立方是负数。
(3)对顶角相等。
分析:要把一个命题写成“若P,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若P,则q”的形式.解略。
三、巩固练习:
P4第2,3。
四、作业:
P8:习题1.1A组~第1题
五、教学反思
师生共同回忆本节的学习内容.
1、什么叫命题?真命题?假命题?
2、命题是由哪两部分构成的?
3、怎样将命题写成“若P,则q”的形式.
4、如何判断真假命题.
高二数学优秀教案【第四篇】
教学目标
1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;
2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;
3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
教学重点与难点
重点:命题的概念、命题的构成
难点:分清命题的条件、结论和判断命题的真假
教学过程
一、复习回顾
引入:初中已学过命题的知识,请同学们回顾:什么叫做命题?
二、新课教学
下列语句的表述形式有什么特点?你能判断他们的真假吗?
(1)若直线a∥b,则直线a与直线b没有公共点.
(2)2+4=7.
(3)垂直于同一条直线的两个平面平行.
(4)若x2=1,则x=1.
(5)两个全等三角形的面积相等.
(6)3能被2整除.
讨论、判断:学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
抽象、归纳:
1、命题定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.
命题的定义的要点:能判断真假的陈述句.
在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.
例1:判断下列语句是否为命题?
(1)空集是任何集合的子集.
(2)若整数a是素数,则是a奇数.
(3)指数函数是增函数吗?
(4)若平面上两条直线不相交,则这两条直线平行.
(5)=-2.
(6)x>15.
让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.
解略。
引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?
通过对此问的思考,学生将清晰地认识到定理、推论都是命题.
过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论)阿拉文库●(,明确所有的定理、推论都是由条件和结论两部分构成)。紧接着提出问题:命题是否也是由条件和结论两部分构成呢?
2、命题的构成――条件和结论
定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.
例2:指出下列命题中的条件p和结论q,并判断各命题的真假.
(1)若整数a能被2整除,则a是偶数.
(2)若四边行是菱形,则它的对角线互相垂直平分.
(3)若a>0,b>0,则a+b>0.
(4)若a>0,b>0,则a+b<0.
(5)垂直于同一条直线的两个平面平行.
此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。
此例中的命题(5),不是“若P,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.
解略。
过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.
3、命题的分类
真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.
假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.
强调:
(1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.
(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。
判断一个数学命题的真假方法:
(1)数学中判定一个命题是真命题,要经过证明.
(2)要判断一个命题是假命题,只需举一个反例即可.
例3:把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:
(1)面积相等的两个三角形全等。
(2)负数的立方是负数。
(3)对顶角相等。
分析:要把一个命题写成“若P,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若P,则q”的形式.解略。
三、巩固练习:
P4第2,3。
四、作业:
P8:习题1.1A组~第1题
五、教学反思
师生共同回忆本节的学习内容.
1、什么叫命题?真命题?假命题?
2、命题是由哪两部分构成的?
3、怎样将命题写成“若P,则q”的形式.
4、如何判断真假命题.
数学高二教案【第五篇】
[核心必知]
1.预习教材,问题导入
根据以下提纲,预习教材P2~P5,回答下列问题。
(1)对于一般的二元一次方程组a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何写出它的求解步骤?
提示:分五步完成:
第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③
第二步,解③,得x=b2c1-b1c2a1b2-a2b1.
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④
第四步,解④,得y=a1c2-a2c1a1b2-a2b1.
第五步,得到方程组的解为x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.
(2)在数学中算法通常指什么?
提示:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
2.归纳总结,核心必记
(1)算法的概念
12世纪的算法指的是用阿拉伯数字进行算术运算的过程续表
数学中的算法通常是指按照一定规则解决某一类问题的明确和有限的步骤
现代算法通常可以编成计算机程序,让计算机执行并解决问题
(2)设计算法的目的
计算机解决任何问题都要依赖于算法。只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题。
[问题思考]
(1)求解某一个问题的算法是否是的?
提示:不是。
(2)任何问题都可以设计算法解决吗?
提示:不一定。
上一篇:高二数学教案(汇总4篇)