高二数学教案 高二数学教案优推4篇
【导言】此例“高二数学教案 高二数学教案优推4篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
高二数学教案【第一篇】
教学目标
1、知识与技能
(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;
(2)能熟练运用正弦函数的性质解题。
2、过程与方法
通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。
3、情感态度与价值观
通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。
教学重难点
重点:正弦函数的性质。
难点:正弦函数的性质应用。
教学工具
投影仪
教学过程
创设情境,揭示课题
同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?
探究新知
让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:
(1)正弦函数的定义域是什么?
(2)正弦函数的值域是什么?
(3)它的最值情况如何?
(4)它的正负值区间如何分?
(5)?(x)=0的解集是多少?
师生一起归纳得出:
1.定义域:y=sinx的定义域为R
2.值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)
再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]
高二数学教案【第二篇】
一、课前准备:
自主梳理
1.对数:
(1) 一般地,如果 ,那么实数 叫做________________,记为________,其中 叫做对数的_______, 叫做________.
(2)以10为底的对数记为________,以 为底的对数记为_______.
(3) , .
2.对数的运算性质:
(1)如果 ,那么 ,
.
(2)对数的换底公式: .
3.对数函数:
一般地,我们把函数____________叫做对数函数,其中 是自变量,函数的定义域是______.
4.对数函数的图像与性质:
a1 0
图象性
质 定义域:___________
值域:_____________
过点(1,0),即当x=1时,y=0
x(0,1)时_________
x(1,+)时________ x(0,1)时_________
x(1,+)时________
在___________上是增函数 在__________上是减函数
自我检测
1. 的定义域为_________.
2.化简: .
3.不等式 的解集为________________.
4.利用对数的换底公式计算: .
5.函数 的奇偶性是____________.
6.对于任意的 ,若函数 ,则 与 的大小关系是___________________________.
二、课堂活动:
例1填空题:
(1) .
(2)比较 与 的大小为___________.
(3)如果函数 ,那么 的最大值是_____________.
(4)函数 的奇偶性是___________.
例2求函数 的定义域和值域。
例3已知函数 满足 .
(1)求 的解析式;
(2)判断 的奇偶性;
(3)解不等式 .
课堂小结
三、课后作业
1. .略
2.函数 的定义域为_______________.
3.函数 的值域是_____________.
4.若 ,则 的取值范围是_____________.
5.设 则 的大小关系是_____________.
6.设函数 ,若 ,则 的取值范围为_________________.
7.当 时,不等式 恒成立,则 的取值范围为______________.
8.函数 在区间 上的值域为 ,则 的最小值为____________.
9.已知 .
(1)求 的定义域;
(2)判断 的奇偶性并予以证明;
(3)求使 的 的取值范围。
10.对于函数 ,回答下列问题:
(1)若 的定义域为 ,求实数 的取值范围;
(2)若 的值域为 ,求实数 的取值范围;
(3)若函数 在 内有意义,求实数 的取值范围。
四、纠错分析
错题卡 题 号 错 题 原 因 分 析
高二数学教案:对数与对数函数
一、课前准备:
自主梳理
1.对数
(1)以 为底的 的对数, ,底数,真数。
(2) , .
(3)0,1.
2.对数的运算性质
(1) , , .
(2) .
3.对数函数
, .
4.对数函数的图像与性质
a1 0
图象性质 定义域:(0,+)
值域:R
过点(1,0),即当x=1时,y=0
x(0,1)时y0
x(1,+)时y0 x(0,1)时y0
x(1,+)时y0
在(0,+)上是增函数 在(0,+)上是减函数
自我检测
1. 2. 3.
4. 5.奇函数 6. .
二、课堂活动:
例1填空题:
(1)3.
(2) .
(3)0.
(4)奇函数。
例2解:由 得 .所以函数 的定义域是(0,1).
因为 ,所以,当 时, ,函数 的值域为 ;当 时, ,函数 的值域为 .
例3解:(1) ,所以 .
(2)定义域(-3,3)关于原点对称,所以
,所以 为奇函数。
(3) ,所以当 时, 解得
当 时, 解得 .
高二数学优秀教案【第三篇】
教学目标:
1、进一步理解和掌握数列的有关概念和性质;
2、在对一个数列的探究过程中,提高提出问题、分析问题和解决问题的能力;
3、进一步提高问题探究意识、知识应用意识和同伴合作意识。
教学重点:
问题的提出与解决
教学难点:
如何进行问题的探究
教学方法:
启发探究式
教学过程:
问题:已知{an}是首项为1,公比为的无穷等比数列。对于数列{an},提出你的问题,并进行研究,你能得到一些什么样的结论?
研究方向提示:
1、数列{an}是一个等比数列,可以从等比数列角度来进行研究;
2、研究所给数列的项之间的关系;
3、研究所给数列的子数列;
4、研究所给数列能构造的新数列;
5、数列是一种特殊的函数,可以从函数性质角度来进行研究;
6、研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。
针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。
课堂小结:
1、研究一个数列可以从哪些方面提出问题并进行研究?
2、你最喜欢哪位同学的研究?为什么?
高二数学教案优秀教案【第四篇】
一、内容和内容解析
1.内容
本节课主要内容是让学生了解在客观世界中要认识客观现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象。如何取得有代表性的观测资料并能够正确的加以分析,是正确的认识未知现象的基础,也是统计所研究的基本问题。
2.内容解析
本节课是高中阶段学习统计学的第一节课,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。学生在九年义务阶段已经学习了收集、整理、描述和分析数据等处理数据的基本方法。在高中学习统计的过程中还将逐步让学生体会确定性思维与统计思维的差异,注意到统计结果的随机性特征,统计推断是有可能错的,这是由统计本身的性质所决定的。统计有两种。一种是把所有个体的信息都收集起来,然后进行描述,这种统计方法称为描述性统计,例如我国进行的人口普查。但是在很多情况下我们无法采用描述性统计对所有的个体进行调查,通常是在总体中抽取一定的样本为代表,从样本的信息来推断总体的特征,这称为推断性统计。例如有的产品数量非常的大或者有的产品的质量检查是破坏性的。统计和概率的基础知识已�
抽样调查是我们收集数据的一种重要途径,是一种重要的、科学的非全面调查方法。它根据调查的目的和任务要求,按照随机原则,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据来推断总体。其中蕴涵了重要的统计思想——样本估计总体。而样本代表性的好坏直接影响统计结论的准确性,所以抽样过程中,考虑的最主要原则为:保证样本能够很好地代表总体。而随机抽样的出发点是使每个个体都有相同的机会被抽中,这是基于对样本数据代表性的考虑。
本节课重点:能从现实生活或其他学科中提出具有一定价值的统计问题,理解随机抽样的必要性与重要性。
二、目标和目标解析
1.目标
(1)通过对具体的案例分析,逐步学会从现实生活中提出具有一定价值的统计问题,
(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性;
(3)以问题链的形式深刻理解样本的代表性。
2.目标解析
本章章头图列举了我国水资源缺乏问题、土地沙漠化问题等情境,提出了学习统计的意义。同时通过具体的实例,使学生能够尝试从实际问题中发现统计问题,提出统计问题。让学生养成从现实生活或其他学科中发现问题、提出问题的习惯,培养学生发现问题与提出问题的能力与意识。
对某个问题的调查最简单的方法就是普查,但是这种方法的局限性很大,出于费用和时间的考虑,有时一个精心设计的抽样方案,其实施效果甚至可以胜过普查,在这个过程中让学生逐步体会到随机抽样的必要性和重要性。抽样调查,就是通过从总体中抽取一部分个体进行调查,借以获得对整体的了解。为了使由样本到总体的推断有效,样本必须是总体的代表,否则就可能出现方便样本。由此在对实例的分析过程中探讨获取能够代表总体的样本的方法,得到随机样本的概念,逐步理解样本的代表性与统计推断结论可靠性之间的关系。
三、教学问题诊断分析
学生在九年义务教育阶段已有对统计活动的认识,并学习了统计图表、收集数据的方法,但对于如何抽样更能使样本代表总体的意识还不强;在以前的学习中,学生的学习内容以确定性数学学 学生已有知识经验与本节要达成的教学目标之间还有很大的差距。主要的困难有:对样本估计总体的思想、对统计结果的“不确定性”产生怀疑,对统计的科学性有所质疑;对抽样应该具有随机性,每个样本的抽取又都落实在某个人的具体操作上不理解,因此教学中要通过具体实例的研究给学生释疑。
在教学过程中,可以鼓励学生从自己的生活中提出与典型案例类似的统计问题,如每天完成家庭作业所需的时间,每天的体育锻炼时间,学生的近视率,一批电灯泡的寿命是否符合要求等等。在学生提出这些问题后,要引导学生考虑问题中的总体是什么,要观测的变量是什么,如何获取样本,通过这样一个教学过程,更能激起学生的学习兴趣,能学有所用,拉近知识与实践的距离,培养学生从现实生活或其他学科中提出具有一定价值的统计问题的能力。在这个过程中提升学生对统计抽样概念的理解,初步培养学生运用统计思想表述、思考和理解现实世界中的问题能力,这样教学效果可能会更佳。
根据这一分析,确定本课时的教学难点是:如何使学生真正理解样本的抽取是随机的,随机抽取的样本将能够代表总体。
四、教学支持条件分析
准备一些随机抽样成功或失败的事例,利用实物投影或放映的多媒体设备辅助教学。
五、教学过程设计
(一)感悟数据、引入课题
问题1:请同学们看章头图中的有关沙漠化和缺水量的数据,你有什么感受?
师生活动:让学生充分思考和探讨,并逐步引导学生产生质疑:这些数据是怎么来的?
设计意图:通过一些数据让学生充分感受我们生活在一个数字化时代,要学会与数据打交道,养成对数据产生的背景进行思考的习惯。
问题2:我发现我们班级有很多的同学都是戴眼镜的,谁能告诉我我们班的近视率?
普查:为了一定的目的而对考察对象进行的全面调�
总体:所要考察对象的全
设计意图:通过与学生比较贴近的案例入手,让学生体会到统计是从日常生活中产生的。
(二)操作实践、展开课题
问题3:如果我想了解榆次二中所有高一学生的近视率,你打算怎么做呢?
抽样调查:从总体中抽取部分个体进行调查,这种调�
设计意图:从这个问题中引出抽样调查和样本的概念,使学生对于如何产生样本进行一定的思考,同时也使学生认识到样本选择的好坏对于用样本估计总体的精确度是有所不同的。
列举:一个的案例