高中数学必修5精编教案精选4篇

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“高中数学必修5精编教案精选4篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

高中数学必修五教案【第一篇】

教材分析

本节课重在探究等比数列的前n项和公式的推导及简单的应用。教学中注重公式的形成过程及数学思想方法的渗透,并揭示公式的结构特征和内在联系.就知识的应用价值来看,它是从大量数学问题和现实问题中抽象出来的模型,在公式推导中所蕴含的数学思想方法在各种数列求和问题中有着广泛的应用.就内容的人文价值上看,它的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生数学的思考问题的良好载体.

教学目标

知识与技能: 掌握等比数列的前n项和公式以及推导方法;会用等比数列的前n项和公式解决有关等比数列的一些简单问题.

过程与方法: 经历等比数列前n 项和的推导过程,总结数列求和方法,体会数学中的思想方法.

情感态度与价值观:通过教材中的实际引例,激发学生学习数学的积极性及学习数学的主动性.

教学重点

等比数列的。前n项和公式推导及公式的简单应用

教学难点

等比数列的前n项和公式推导过程和思想方法

教学过程

Ⅰ、课题导入

[创设情境]

[提出问题] “国王对国际象棋的发明者的奖励”的故事

Ⅱ、讲授新课

[分析问题]如果把各格所放的麦粒数看成是一个数列,我们可以得到一个等比数列,它的首项是1,公比是2,求第一个格子到第64个格子各格所放的麦粒数总合就是求这个等比数列的前64项的和。下面我们先来推导等比数列的前n项和公式。

高中数学必修5教案【第二篇】

教学准备

教学目标

数列求和的综合应用

教学重难点

数列求和的综合应用

教学过程

典例分析

3.数列{an}的前n项和Sn=n2-7n-8,

(1) 求{an}的通项公式

(2) 求{|an|}的前n项和Tn

4.等差数列{an}的公差为 ,S100=145,则a1+a3 + a5 + …+a99=

5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为 的等差数列,则|m-n|=

6.数列{an}是等差数列,且a1=2,a1+a2+a3=12

(1)求{an}的通项公式

(2)令bn=anxn ,求数列{bn} 前n项和公式

7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数

8. 在等差数列{an}中,a1=20,前n项和为Sn,且S10= S15,求当n为何值时,Sn有最大值,并求出它的最大值

. 已知数列{an},an∈N,Sn= (an+2)2

(1)求证{an}是等差数列

(2)若bn= an-30 ,求数列{bn}前n项的最小值

0. 已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)

(1)设f(x)的图象的顶点的横坐标构成数列{an},求证 数列{an}是等差数列

(2设f(x)的图象的顶点到 x轴的距离构成数列{dn},求数列{dn}的前n项和 sn.

11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)

12 .某商品在最近100天内的价格f(t)与时间t的

函数关系式是 f(t)=

销售量 g(t)与时间t的函数关系是

g(t)= -t/3 +109/3 (0≤t≤100)

求这种商品的日销售额的最大值

注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值

高中数学必修5教案【第三篇】

教学准备

教学目标

进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式。

教学重难点

教学重点:熟练运用定理。

教学难点:应用正、余弦定理进行边角关系的相互转化。

教学过程

一、复习准备:

1. 写出正弦定理、余弦定理及推论等公式。

2. 讨论各公式所求解的三角形类型。

二、讲授新课:

1. 教学三角形的解的讨论:

① 出示例1:在△ABC中,已知下列条件,解三角形。

分两组练习→ 讨论:解的个数情况为何会发生变化?

②用如下图示分析解的情况。 (A为锐角时)

② 练习:在△ABC中,已知下列条件,判断三角形的解的情况。

2. 教学正弦定理与余弦定理的活用:

① 出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦。

分析:已知条件可以如何转化?→ 引入参数k,设三边后利用余弦定理求角。

② 出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型。

分析:由三角形的什么知识可以判别? → 求最大角余弦,由符号进行判断

③ 出示例4:已知△ABC中,,试判断△ABC的形状。

分析:如何将边角关系中的边化为角? →再思考:又如何将角化为边?

3. 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化。

三、巩固练习:

3. 作业:教材P11 B组1、2题。

高中数学学习方法技巧总结【第四篇】

基础很重要,保持耐心多巩固

要学好数学,最关键的是要有一个好的基础。只有打牢数学基础,才能够把高中数学好,同样只有打好基础,才能够数学取得高分。打好基础是最关键的!比如:建一栋大楼,如果地基不稳,不管大楼有多么豪华,都只是华而不实。

想学好数学,对数学感兴趣

其实学好数学最好的办法就是发自内心由衷的想要学习,渴望学习,才能体会到从学习中所收获的乐趣。自己的成就感提升,对于学习数学的积极性也就提高了,觉得数学并没有那么难,就愿意去多接触了。

多做题反复做,有题感

其实学好数学办法就是要大量做题,反复去做,题做多了就知道哪些方面需要自己去加强学习,还有就是同样做数学题做多了就会有题感。有些题,它的类型都是一样的,题做多了之后,即使你不会做,你也会找到一些解题的思路和技巧。

18 2907648
");