2024年高中数学必修一教案 高中数学必修教案【汇集4篇】

网友 分享 时间:

高中数学必修一教案【第一篇】

1.理解直线的方程的概念,会判断一个点是否在一条直线上.

2.培养学生勇于发现、勇于探索的精神,培养学生合作交流等良好品质.

教学重点。

直线的特征性质,直线的方程的概念.

教学难点。

直线的方程的概念.

教学方法。

这节课主要采用分组探究教学法.本节首先利用一次函数的解析式与图象的关系,揭示代数方程与图形之间的关系,然后用集合表示的性质描述法阐述直线与方程的对应关系,进而给出直线的方程的概念.本节教学中,要突出用集合的观点完成由形到数、由数到形的转化.

教学过程。

环节。

教学内容。

师生互动。

设计意图。

引入。

1.用性质描述法表示大于0的偶数构成的集合,并判断-1和6在不在这个集合中.

2.作函数y=x+3的图象,并判断点(0,1)和(-2,1)在不在函数的图象上.

教师提出问题,学生解答.

教师点评.

复习本节相关内容.

新课。

1.函数与图象。

一次函数的图象是一条直线,如y=x+3的图象是直线ab,如图所示.

2.直线的特征性质。

例如,通过点(2,0)且垂直于x轴的直线l.

一般地,在平面直角坐标系中,给定一条直线,如果直线上点的坐标都满足某个方程,而且满足这个方程的坐标所表示的点都在直线上,那么这个方程叫做直线的方程.

例分别给出下列直线的方程:

(1)直线m平行于x轴,且通过点(-2,2);。

(2)y轴所在的直线.

练习。

(1)写出垂直于x轴且过点(5,-1)的直线方程.

(2)已知点(a,3)在方程为y=x+1的直线上,求a的值.

师:y=x+3是一个代数方程,而直线ab是一个几何图形,也就是说,代数方程可以用几何图形表示,几何图形也可以用代数方程来表示.

学生在教师引导下理解代数方程与几何图形的对应关系.

师:既然直线是点的集合,那么我们就可以利用集合的特征性质来解决这一问题.

师:如图,在直线l上的点的横坐标有什么特点?横坐标是2的点也一定在直线l上吗?

直线l的特征性质能用x=2来表述吗?

学生回答教师提出的问题.

师:对于平面直角坐标系中的任意一点,只要看它的坐标是否满足x=2,就能判断出点是否在直线l上.

点a(2,1)的坐标满足方程x=2吗?点a在直线l上吗?

点b(,2)满足方程x=2吗?点b在直线l上吗?

教师强调要从两方面来说明某个方程是不是给定直线的方程.

师:由上面分析,通过点(2,0)且垂直于x轴的直线l的方程是什么?

学生回答.

教师引导学生解答.引导过程中进一步强调直线上的点的坐标都满足方程,而且满足这个方程的坐标所表示的点都在直线上.

学生小组合作完成练习,教师巡视了解学生掌握情况.

由特殊到一般,为引入直线的方程提供基础.

提出解决问题的方法.

引导学生分析直线l的坐标特点,为概念的引入打下基础.

通过具体的例子来说明判断某点是否在给定直线上的方法.

通过例题进一步加强学生对概念的理解.

小结。

1.直线的方程的概念.

师生共同回顾本节内容,进一步深化对概念的理解.

总结本节内容.

作业。

教材p73练习a组题.

教材p73练习b组题(选做).

学生标记作业.

针对学生实际,对课后书面作业实施分层设置.

语文、数学、英语、历史、地理、政治、化学、物理、生物、美术、音乐、体育、信息技术。

语文、数学、英语、历史、地理、政治、化学、物理、生物、美术、音乐、体育、信息技术。

高中数学必修一教案【第二篇】

(二)倍角公式。

2cos2α=1+cos2α2sin2α=1-cos2α。

注意:倍角公式揭示了具有倍数关系的两个角的三角函数的运算规律,可实现函数式的降幂的变化。

注:(1)两角和与差的三角函数公式能够解答的三类基本题型:求值题,化简题,证明题。

(2)对公式会“正用”,“逆用”,“变形使用”;。

(3)掌握“角的演变”规律,

(4)将公式和其它知识衔接起来使用。

重点难点。

重点:几组三角恒等式的应用。

难点:灵活应用和、差、倍角等公式进行三角式化简、求值、证明恒等式。

高中数学必修一教案【第三篇】

解三角形及应用举例。

教学重难点。

解三角形及应用举例。

教学过程。

一。基础知识精讲。

掌握三角形有关的定理。

利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

利用余弦定理,可以解决以下两类问题:

(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题。

二。问题讨论。

思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论。

思维点拨::三角形中的三角变换,应灵活运用正、余弦定理。在求值时,要利用三角函数的有关性质。

例6:在某海滨城市附近海面有一台风,据检测,当前台。

风中心位于城市o(如图)的东偏南方向。

300km的海面p处,并以20km/h的速度向西偏北的。

方向移动,台风侵袭的范围为圆形区域,当前半径为60km,

并以10km/h的速度不断增加,问几小时后该城市开始受到。

台风的侵袭。

一。小结:

1、利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2。利用余弦定理,可以解决以下两类问题:

(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

3、边角互化是解三角形问题常用的手段。

三。作业:p80闯关训练。

高中数学必修一教案【第四篇】

根据德国心理学家艾宾浩斯绘制的遗忘曲线,学生对知识的遗忘遵从先快后慢的规律,有效的回忆可以加深对知识的理解,掌握知识的内在联系,延缓知识的遗忘。教师要采用不同的形式,整理阶段的基础知识,使内容条理化、清晰化地呈现在同学的面前,从而完成由厚到薄的过程,对重难点和关键点,进行重点的、有针对性的讲解。配以适当的练习,提高学生对基本知识和基本方法的深刻性和准确性的理解掌握。促进学生科学合理的知识结构的形成,使知识系统化和网络化。

旧知检测。

要想有效的提高课堂的复习效率,就须克服“眼高手低”的毛病。很多同学上课时处于一种混沌的状态,一听就懂,一做就错;一听就会,一到自己做就不会了。为避免这样的情况,就必须让学生更好地了解自己知识的掌握情况。可以设置几个基础的填空和一个左右的解答题,通过解答的过程让学生“自知自明”。激发起兴趣,有效地提高复习的效率。

精编精讲。

精心的选择适量的典型例题,分析解决这些问题应该是一堂复习课的核心内容。解题的目的绝不是仅仅解决这个问题本身,而是要给出通性通法,揭示解决问题的一般规律,熟练掌握数学思想方法,提高学生分析问题、解决问题的能力。

48 1818127
");