高一数学教案(精选4篇)

网友 分享 时间:

【前言导读】此篇优秀教案“高一数学教案(精选4篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

高中数学教案【第一篇】

教学准备

教学目标

熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。

掌握两角和与差的正、余弦公式,能用公式解决相关问题。

教学重难点

熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。

教学过程

复习

两角差的余弦公式

用- B代替B看看有什么结果?

高一数学教案【第二篇】

[三维目标]

一、知识与技能:

1、巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系

2、了解集合的运算包含了集合表示法之间的转化及数学解题的一般思想

3、了解集合元素个数问题的讨论说明

二、过程与方法

通过提问汇总练习提炼的形式来发掘学生学习方法

三、情感态度与价值观

培养学生系统化及创造性的思维

[教学重点、难点]:会正确应用其概念和性质做题 [教 具]:多媒体、实物投影仪

[教学方法]:讲练结合法

[授课类型]:复习课

[课时安排]:1课时

[教学过程]:集合部分汇总

本单元主要介绍了以下三个问题:

1,集合的含义与特征

2,集合的`表示与转化

3,集合的基本运算

一,集合的含义与表示(含分类)

1,具有共同特征的对象的全体,称一个集合

2,集合按元素的个数分为:有限集和无穷集两类

高一数学教案【第三篇】

教学目的

通过等可能事件概率的讲解,使学生得到一种较简单的、较现实的计算事件概率的方法。

1.了解基本事件;等可能事件的概念;

2.理解等可能事件的概率的定义,能运用此定义计算等可能事件的概率

教学重点

熟练、准确地应用排列、组合知识,是顺利求出等可能事件概率的重要方法。1.等可能事件的概率的意义:如果在一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是,如果事件A包含m个结果,那么事件A的概率P(A)=? 。2.等可能事件A的概率公式的简单应用。

教学难点

等可能事件概率的计算方法。试验中出现的结果个数n必须是有限的,每个结果出现的可能性必须是相等的。

教学过程

一、复习提问

1.下面事件:①在标准大气压下,水加热到800C时会沸腾。②掷一枚硬币,出现反面。③实数的绝对值不小于零;是不可能事件的有

A.②B. ① C. ①②D. ③

2.下面事件中:①连续掷一枚硬币,两次都出现正面朝上;②异性电荷,相互吸引;③在标准大气压下,水在10C结冰。是随机事件的有

A.②B. ③ C. ① D.②③

3.下列命题是否正确,请说明理由

①“当x∈R时,sinx+cosx≤1”是必然事件;

②“当x∈R时,sinx+cosx≤1”是不可能然事件;

③“当x∈R时,sinx+cosx<2”是随机事件;

④“当x∈R时,sinx+cosx<2”是必然事件;

3.某人进行打靶练习,共射击10次,其中有2次击中10环,有3次击中9环,有4次击中8环,有1次未中靶,试计算此人中靶的频率,假设此人射击1次,问中靶的概率大约是多少?

4.上抛一个刻着1、2、3、4、5、6字样的正六面体方块出现字样为“3”的事件的概率是多少?出现字样为“0”的事件的概率为多少?上抛一个刻着六个面都是“P”字样的正方体方块出现字样为“P”的事件的概率为多少?

二、新课引入

随机事件的概率,一般可以通过大量重复试验求得其近似值。但对于某些随机事件,也可以不通过重复试验,而只通过对一次试验中可能出现的结果的分析来计算其概率。这种计算随机事件概率的方法,比经过大量重复试验得出来的概率,有更简便的运算过程;有更现实的计算方法。这一节课程的学习,对有关排列、组合的基本知识和基本思考问题的方法有较高的要求。

三、进行新课

上面我们已经说过:随机事件的概率,一般可以通过大量重复试验求得其近似值。但对于某些随机事件,也可以不通过重复试验,而只通过对一次试验中可能出现的结果的分析来计算其概率。

例如,掷一枚均匀的硬币,可能出现的结果有:正面向上,反面向上。由于硬币是均匀的,可以认为出现这两种结果的可能发生是相等的。即可以认为出现“正面向上”的概率是1/2,出现“反面向上”的概率也是1/2。这与前面表1中提供的大量重复试验的结果是一致的。

又如抛掷一个骰子,它落地时向上的数的可能是情形1,2,3,4,5,6之一。即可能出现的结果有6种。由于骰子是均匀的,可以认为这6种结果出现的可能发生都相等,即出现每一种结果的概率都是1/6。这种分析与大量重复试验的结果也是一致的。

现在进一步问:骰子落地时向上的数是3的倍数的概率是多少?

由于向上的数是3,6这2种情形之一出现时,“向上的数是3的倍数”这一事件(记作事件A)发生。因此事件A的概率P(A)=2/6=1/3

定义1基本事件:一次试验连同其中可能出现的每一个结果称为一个基本事件。

通常此试验中的某一事件A由几个基本事件组成。如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等。那么每一个基本的概率都是。如果某个事件A包含的结果有m个,那么事件A的概率P(A)=。亦可表示为P(A)=? 。

四、课堂举例:

例题1有10个型号相同的杯子,其中一等品6个,二等品3个,三等品1个.从中任取1个,取到各个杯子的可能性是相等的。由于是从10个杯子中任取1个,共有10种等可能的结果。又由于其中有6个一等品,从这10个杯子中取到一等品的结果有6种。因此,可以认为取到一等品的概率是。同理,可以认为取到二等品的概率是3/10,取到三等品的概率是。这和大量重复试验的结果也是一致的。

例题2从52张扑克牌中任意抽取一张(记作事件A),那么不论抽到哪一张都是机会均等的,也就是等可能性的,不论抽到哪一张花色是红心的牌(记作事件B)也都是等可能性的;又不论抽到哪一张印有“A”字样的牌(记作事件C)也都是等可能性的。所以各个事件发生的概率分别为P(A)==1,P(B)==,P(C)==

在一次试验中,等可能出现的n个结果组成一个集合I,这n个结果就是集合I的n个元素。各基本事件均对应于集合I的含有1个元素的子集,包含m个结果的事件A对应于I的含有m个元素的子集A.因此从集合的角度看,事件A的概率是子集A的元素个数(记作card(A))与集合I的元素个数(记作card(I))的比值。即P(A)==

例如,上面掷骰子落地时向上的数是3的倍数这一事件A的概率P(A)===

例3先后抛掷两枚均匀的硬币,计算:

(1)两枚都出现正面的概率;

(2)一枚出现正面、一枚出现反面的概率。

分析:抛掷一枚硬币,可能出现正面或反面这两种结果。因而先后抛掷两枚硬币可能出现的结果数,可根据乘法原理得出。由于硬币是均匀的,所有结果出现的可能性都相等。又在所有等可能的结果中,两枚都出现正面这一事件包含的结果数是可以知道的,从而可以求出这个事件的概率。同样,一枚出现正面、一枚出现反面这一事件包含的结果数是可以知。道的,从而也可求出这个事件的概率。

解:由乘法原理,先后抛掷两枚硬币可能出现的结果共有2×2=4种,且这4种结果出现的可能性都相等。

(1)记“抛掷两枚硬币,都出现正面”为事件A,那么在上面4种结果中,事件A包含的结果有1种,因此事件A的概率

P(A)=1/4

答:两枚都出现正面的概率是1/4。

(2)记“抛掷两枚硬币,一枚出观正面、一枚出现反面”为事件B。那么事件B包含的结果有2种,因此事件B的概率

P(B)=2/4=1/2

答:一枚出现正面、一枚出现反面的概率是1/2。

例4在100件产品中,有95件合格品,5件次品。从中任取2件,计算:

(1)2件都是合格品的概率;

(2)2件都是次品的`概率;

(3)1件是合格品、1件是次品的概率。

分析:从100件产品中任取2件可能出现的结果数,就是从、100个元素中任取2个的组合数。由于是任意抽取,这些结果出现的可能性都相等。又由于在所有产品中有95件合格品、5件次品,取到2件合格品的结果数,就是从95个元素中任取2个的组合数;取到2件次品的结果数,就是从5个元素中任取2个的组合数;取到1件合格品、1件次品的结果数,就是从95个元素中任取1个元素的组合数与从5个元素中任取1个元素的组合数的积,从而可以分别得到所求各个事件的概率。

解:(1)从100件产品中任取2件,可能出现的结果共有种,且这些结果出现的可能性都相等。又在种结果中,取到2件合格品的结果有种。记“任取2件,都是’合格品”为事件A,那么事件A的概率

P(A)=? /? =893/990

答:2件都是合格品的概率为893/990

(2)记“任取2件,都是次品”为事件B。由于在种结果中,取到2件次品的结果有C52种,事件B的概率

P(B)=? /? =1/495

答:2件都是次品的概率为1/495

(3)记“任取2件,1件是合格品、I件是次品”为C。由于在种结果中,取到1件合格品、l件次品的结果有?种,事件C的概率

P(C)= /? =19/198

答:1件是合格品、1件是次品的概率为19/198

例5某号码锁有6个拨盘,每个拨盘上有从0到9共十个数字,当6个拨盘上的数字组成某一个六位数字号码(开锁号码)时,锁才能打开。如果不知道开锁号码,试开一次就把锁打开的概率是多少?

分析:号码锁每个拨盘上的数字,从0到9共有十个。6个拨盘上的各一个数字排在?起,就是一个六位数字号码。根据乘法原理,这种号码共有10的6次方个。由于不知道开锁号码,试开时采用每一个号码的可能性都相等。又开锁号码只有一个,从而可以求出试开一次就把锁打开的概率。

解:号码锁每个拨盘上的数字有10种可能的取法。根据乘法原理,6个拨盘上的数字组成的六位数字号码共有10的6次方个。又试开时采用每一个号码的可能性都相等,且开锁号码只有一个,所以试开一次就把锁打开的概率

P=1/1000000

答:试开一次就把锁打开的概率是1/1000000

五、课堂小结:用本节课的观点求随机事件的概率时,首先对于在试验中出现的结果的可能性认为是相等的;其次是对于通过一个比值的计算来确定随机事件的概率,并不需要通过大量重复的试验。因此,从方法上来说这一节课所提到的方法,要比上一节所提到的方法简便得多,并且更具有实用价值。

六、课堂练习

1.(口答)在40根纤维中,有12根的长度超过30毫米。从中任取1根,取到长度超过30毫米的纤维的概率是多少?

2.在10支铅笔中,有8支正品和2支副品。从中任取2支,恰好都取到正品的概率是多少?

七、布置作业:课本第120页习题第2――-6题

高中数学教案【第四篇】

教学目标:

1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

2、会求一些简单函数的反函数。

3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

教学重点:求反函数的方法。

教学难点:反函数的概念。

教学过程

教学活动

设计意图一、创设情境,引入新课

1、复习提问

①函数的概念

②y=f(x)中各变量的意义

2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。

3、板书课题

由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

二、实例分析,组织探究

1、问题组一:

(用投影给出函数与;与()的图象)

(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)

(2)由,已知y能否求x?

(3)是否是一个函数?它与有何关系?

(4)与有何联系?

2、问题组二:

(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(3)函数 ()的定义域与函数()的值域有什么关系?

3、渗透反函数的概念。

(教师点明这样的函数即互为反函数,然后师生共同探究其特点)

从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。

通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。

三、师生互动,归纳定义

1、(根据上述实例,教师与学生共同归纳出反函数的定义)

函数y=f(x)(x∈A) 中,设它的值域为 C.我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) 。如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数。这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数。记作: 。考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成。

2、引导分析:

1)反函数也是函数;

2)对应法则为互逆运算;

3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

5)函数y=f(x)与x=f(y)互为反函数;

6)要理解好符号f;

7)交换变量x、y的原因。

3、两次转换x、y的对应关系

(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

4、函数与其反函数的关系

函数y=f(x)

函数

定义域

A

C

值 域

C

A

四、应用解题,总结步骤

1、(投影例题)

例1求下列函数的反函数

(1)y=3x-1 (2)y=x 1

例2求函数的反函数。

(教师板书例题过程后,由学生总结求反函数步骤。)

2、总结求函数反函数的步骤:

1° 由y=f(x)反解出x=f(y)。

2° 把x=f(y)中 x与y互换得。

3° 写出反函数的定义域。

(简记为:反解、互换、写出反函数的定义域)例3(1)有没有反函数?

(2)的反函数是________.

(3)(x<0)的反函数是__________.

在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。

通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。

通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。

题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。

五、巩固强化,评价反馈

1、已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

(1)y=-2x 3(xR) (2)y=-(xR,且x)

( 3 ) y=(xR,且x)

2、已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。

五、反思小结,再度设疑

本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。

(让学生谈一下本节课的学习体会,教师适时点拨)

进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。

六、作业

习题第1题,第2题

进一步巩固所学的知识。

教学设计说明

"问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。

反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。

18 27489
");