《圆的面积》教学设计【精彩8篇】

网友 分享 时间:

通过实例引导学生理解圆的面积公式,结合图形与实际应用,培养学生的空间想象能力和逻辑思维,增强数学学习的兴趣与实践能力。下面是勤劳的小编为大家分享的《圆的面积》教学设计【精彩8篇】范例,欢迎借鉴参考。

圆的面积教案 【第一篇】

教学目的:

通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

重点:

圆面积计算公式。

难点:

圆面积计算公式的推导。

教具、学具:

圆的面积演示教具及平行四边形拼割教具;厚纸做的圆及剪刀与胶布。

教学过程:

一、复习。

1.口算:

2.已知圆的半径是2.5分米,它的周长是多少?

3.一个长方形的长是6.2米,宽是4米,它的面积是多少?

4.说出平行四边形的面积公式是怎样推导出来的?

我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。(板书课题:圆的面积)

二、新授。

1.圆的面积的含义。

问:面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)

以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

2.圆的面积公式的推导。

怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。但我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形——长方形。怎样分割呢?教师拿出圆的面积教具进行演示:

先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)

再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

向学生说明:如果分的等份越多所拼的图形就越接近长方形。

教师边提问边完成圆面积公式的推导:

拼成的图形近似于什么图形?

原来圆的面积与这个长方形的。面积是否相等?

长方形的长相当于圆的哪部分的长?

长方形的宽是圆的哪部分?

长方形的面积=长×宽

圆的面积 = ×

= ×

= ×

=

用S表示圆的面积,那么圆的面积可以写成:

3.圆面积公式的应用。

出示例1:一个圆的半径是4厘米。它的面积是多少平方厘米?

学生读题,问:要求圆的面积的条件是否具备?怎样列式?学生回答,教师板书:

=3.14×

=3.14×16

=50.24(平方厘米)

答:它的面积是50.24平方厘米。

三、巩固练习。

1.根据下面所给的条件,求圆的面积。

半径2分米。

直径10厘米。(先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

2.练习二十七的第1~4题。

强调书写格式,运算顺序与单位名称。

总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式 计算。

四、作业。

练习二十七第5、6题。

《圆的面积》的教学设计 【第二篇】

一、内容简介及设计理念

本节课是在学生充分认识了圆的各部分的特征和掌握了园的周长的计算的基础上进行教学的。通过对圆面积的研究,使学生初步掌握研究曲线图形的基本方法,为以后学习圆柱的表面积打下基础。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。

本节课设计了三次探究活动,第一次探究活动,通过折一折和剪拼把圆转化成已经学过的三角形和平行四边形,得到了解决问题的思路。第二次探究活动,围绕着“怎样使折出的图形更像三角形”、“使剪拼后的图形更像平行四边形”这些问题开展操作、想象活动,充分体验了“极限思想”。

第三次探究活动,学生借助数字、字母、符号等,运用数学的思维方式进行思考,推导出圆的面积计算公式。

二、教学目标:

1、经历圆的面积计算公式的推导过程,掌握圆的面积计算公式。

2、能正确运用圆的面积计算公式计算圆的面积。

3、在探究圆的面积计算公式的过程中,体会转化的数学思想方法;初步感受极限的思想。

三、教学重点和难点:

圆的面积计算公式的推导。

四、教学准备:

圆形纸片、剪刀、多媒体课件等。

五、教学过程:

教学过程教师活动学生活动

一、谈话引入,揭示课题

二、探究新知。

1、第一次探究,明确思路,体会“转化”的数学思想方法

2、第二次探究,明确方法,体验“极限思想”

3、第三次探究,深化思维,推导公式。

4、解决问题

5、小结

三、知识应用(出示一个圆)大家看,这是什么图形?

师:你已经掌握圆的哪些知识?

师:关于圆你还想探讨什么?

(板书课题:圆的面积。)

师:谁能摸一摸这个圆片的面积。

师:那这个圆的面积怎么求呢?(学生沉默),请你在大脑中搜索一下,以前我们研究一个图形的面积时,用到过哪些好的方法?

师:那圆能不能转化成我们学过的图形呢?请大家利用手中的圆纸片,先想一想,再动手试一试,然后在小组内交流一下。(教师巡视[评析“圆”作为一种由曲线围成的图形,与学生头脑中熟悉的由直线段围成的图形(如长方形、平行四边形等)差别比较大,因此当老师提出“怎么求圆的面积呢”,学生感到很茫然。此时,学生最渴望得到老师的指点。作为教师,如何施展自己的“点金”术,取决于教师的教学理念。

在这里,老师没有直截了当地讲“方法”,而是从培养学生的解题能力入手,引导学生从头脑里检索已有的知识和方法:“以前我们研究一个图形时,用到过哪些好的方法?”这样设计,既在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来了,沟通了知识之间的联系,促成了迁移。

师:好,同学们停一停。刚才老师发现有的小组已经有想法了。我看你们小组的想法就很好,谁代表小组上来说一说?大家认真听,看看他们是怎么想的。

师:噢,你想把圆转化成我们学过的三角形来求它的面积。

师:谁还有不同的方法?

师:这像我们学过的什么图形?

师:你想把圆转化成平行四边形来求它的面积,是不是?

师:刚才同学们有了两种思路,可以把圆折一折,想转化成三角形,还可以通过剪拼把圆转化成平行四边形,不论哪种方法,都是把圆转化成学过的图形来求它的面积。(板书:转化[评析通过第一次探究,学生产生了两种很有价值的思路。即通过折一折,把圆转化成近似的三角形;通过剪拼把圆转化成近似的平行四边形。教师设计了“你们发现这两种方法的共同点了吗”这一关键问题,旨在引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。]。)

师:同学们刚才也发现了,不管是折出的图形,还是剪拼出的图形,都不是很像三角形,怎样让它更接近这些图形呢?是不是得进一步研究。请每个小组在两种思路中选择一种继续研究。

师:各个小组都研究出结果了,谁想先来展示一下?请你们小组先说。

师:为什么要折这么多份?

师:你们同意吗?这就是把圆折成16份时其中的一份(贴在黑板上),和刚才平均分成4份中的一份相比,确实像三角形了。如果想让折出的形状更接近三角形,怎么办?

师:你继续折给大家看看。(学生折起来很费劲)看来同学们再继续折纸有困难了,老师在电脑上给大家演示一下。这是同学们刚才把圆平均分成16份的形状(课件演示“正十六边形”),这一份看起来像是三角形了。现在我们再把它平均分成32份,有什么变化?(课件演示,并突出其中一份的形状。)

师:你发现了什么?

师:如果分的份数再多呢?请大家闭上眼睛想象一下,如果把圆平均分成64份、128份……分的份数越来越多,那其中的一份会是什么形状?

师:同学们,用这个方法,成功地把求圆的面积转化成求三角形的面积,你们的方法真好。有不一样的方法吗?(一个小组迫不及待地举手想发言)请你们小组派个代表展示你们的成果。

师:这个方法还真不错,这个小组把圆剪成8份(把这个小组的作品贴在黑板上),和刚才剪成4份拼成的图形相比,有什么变化呢?

师:能让拼成的图形更接近平行四边形吗?

师:哪个小组分的份数更多?

(教师让另一组展示自己平均分成16份后拼成的图形。)

师:和前两次拼成的图形比,又有什么变化?

师:如果要让拼成的图形比它还接近平行四边形,怎么办?

师:我们让电脑来帮忙。大家看,老师在电脑上把这圆平均分了32份,看拼成新的图形,你有什么发现呢?(课件演示。)

师:把这圆平均分了64份,看拼成新的图形呢?

圆的面积教案 【第三篇】

教学目的:

1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括力,发展学生的空间观念。

3、渗透转化的数学思想和极限思想。

教学重点:

圆面积公式的推导。

教学难点:

弄清圆与转化后的近似图形之间的关系。

学具:每四人小组一个彩色圆(教师分好8等分点)、两三个圆、固体胶、卡纸、剪刀。

教具:课件。

教学过程:

一、谈话揭题:

出示图:

你看到了什么?刚才同学们提到的圆的面积就是今天这节课我们要来研究的内容。(出示课题:圆的面积)那么圆的面积和什么有关?(半径、直径)

二、新课教学:

1、猜测:

现在请大家看,这儿有一张正方形的纸,(课件演示)用它剪一个最大的圆,(课件演示)如果圆的半径用r来表示,你知道原来正方形的面积怎么求吗?(2rx2r)整理一下(板书:2rx2r=4r的平方)(按虚线)我们再来看看图,你明白了什么?这样看来,正方形的面积是r的平方的4倍,那么,现在请你猜猜看,圆的面积大概会是多少?

2、验证:

(1)现在我们都认为圆的面积是r的。平方的三倍多一点,那么,圆的面积与r的平方到底有怎样的关系呢?你们准备用怎样的方法来研究它呢?下面请四人小组讨论一下,可以动用桌子上的学具。(教师巡视)

(2)反馈:(三分钟后,低到高)

a:你们为什么不动?你们又是怎么想的?(平均分成若干份,拼成我们学过的图形来研究)同意吗?

b:这儿有一个圆,我们把它平均分成四份,可以吗?那么怎么拼呢?(学生拼,投影演示)看看象什么图形?(平行四边形)象吗?我看不象。怎样使它象呢?(分的份数多一点)刚才我们拼的图形象平行四边形,当然,可能还能拼成别的图形。

c:刚才我们讨论研究出来的方法第一步是等分,第二步是想一想拼成什么图形,再拼一拼,第三步是推导。(板书:等分想、拼推导)当然,也可以用别的方法。(板书箭头)

(3)操作:

你们想试一试吗?现在请组长拿出信封,倒出里面的圆片,我们以四人小组为单位动动手。(小组讨论操作,师巡回指导:表扬拼出与别组不一样图形的小组,提示拼好后可以用胶水粘住。)

3、小组汇报:(举起把圆等分成8份、16份所拼成的长方形或平行四边形给学生看一看,再请平均分成16份拼成长方形或平行四边形的同学汇报)

(1)学生汇报。

(2)有没有疑问?

拼成的长方形是真正的长方形吗?为什么?(边是曲线)

如果把一个圆等分成32份,拼成的长方形会怎样呢?(课件演示)等分成64份,又会怎么样呢?(课件演示)如果等分的份数更多,又会怎样呢?你能得出什么结论?(圆等分的份数越多,拼成的图形越接近于长方形)

(3)板书:

那么长方形的面积是怎么求的?(板书)它的长相当于圆的什么?怎么用字母表示?宽呢?(课件演示:在长方形或平行四边形64等分图的下面出示r,右边出示r,同时板书)那么圆的面积=rxr=r的平方。

(4)还有补充吗?

小组汇报:平行四边形、三角形、梯形面积转化为圆的面积公式。(实物投影仪下显示,最后写成r的平方,14bd的平方)

4、小结:通过刚才我们四人小组的活动,大家有什么结论?(不管拼成什么图形,都能推导出圆的面积是r的平方)那么知道什么可以求出圆的面积?(半径、直径、周长)

三、巩固练习:

1、出示:课本p1302(1)(3)(课件演示)会吗?(草稿本上算,投影反馈)

2、现在来看这个图形(猜测题)如果r=5厘米,你能求什么?(圆面积、正方形的面积、剩下的纸的面积)请你草稿本上算一算。(投影反馈)或口答。

四、机动练习:

教师准备一些实物,分发给四人小组:你们能求出它们的面积吗?(反馈)还可以测什么数据算面积?

五、全课小结:

今天这节课给你印象最深刻的一点是什么?

《圆的面积》教学设计 【第四篇】

一、内容简介及设计理念

本节课是在学生充分认识了圆的各部分的特征和掌握了园的周长的计算的基础上进行教学的。通过对圆面积的研究,使学生初步掌握研究曲线图形的基本方法,为以后学习圆柱的表面积打下基础。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。

本节课设计了三次探究活动,第一次探究活动,通过折一折和剪拼把圆转化成已经学过的三角形和平行四边形,得到了解决问题的思路。第二次探究活动,围绕着“怎样使折出的图形更像三角形”、“使剪拼后的图形更像平行四边形”这些问题开展操作、想象活动,充分体验了“极限思想”。

第三次探究活动,学生借助数字、字母、符号等,运用数学的思维方式进行思考,推导出圆的面积计算公式。

二、教学目标:

1、经历圆的面积计算公式的推导过程,掌握圆的面积计算公式。

2、能正确运用圆的面积计算公式计算圆的面积。

3、在探究圆的面积计算公式的过程中,体会转化的数学思想方法;初步感受极限的思想。

三、教学重点和难点:

圆的面积计算公式的推导。

四、教学准备:

圆形纸片、剪刀、多媒体课件等。

五、教学过程:

教学过程教师活动学生活动

一、谈话引入,揭示课题

二、探究新知。

1、第一次探究,明确思路,体会“转化”的数学思想方法

2、第二次探究,明确方法,体验“极限思想”

3、第三次探究,深化思维,推导公式。

4、解决问题

5、小结

三、知识应用(出示一个圆)大家看,这是什么图形?

师:你已经掌握圆的哪些知识?

师:关于圆你还想探讨什么?

(板书课题:圆的面积。)

师:谁能摸一摸这个圆片的面积。

师:那这个圆的面积怎么求呢?(学生沉默),请你在大脑中搜索一下,以前我们研究一个图形的面积时,用到过哪些好的方法?

师:那圆能不能转化成我们学过的图形呢?请大家利用手中的圆纸片,先想一想,再动手试一试,然后在小组内交流一下。“圆”作为一种由曲线围成的图形,与学生头脑中熟悉的由直线段围成的图形(如长方形、平行四边形等)差别比较大,因此当老师提出“怎么求圆的面积呢”,学生感到很茫然。此时,学生最渴望得到老师的指点。作为教师,如何施展自己的“点金”术,取决于教师的教学理念。

在这里,老师没有直截了当地讲“方法”,而是从培养学生的解题能力入手,引导学生从头脑里检索已有的知识和方法:“以前我们研究一个图形时,用到过哪些好的方法?”这样设计,既在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来了,沟通了知识之间的联系,促成了迁移。

师:好,同学们停一停。刚才老师发现有的小组已经有想法了。我看你们小组的想法就很好,谁代表小组上来说一说?大家认真听,看看他们是怎么想的。

师:噢,你想把圆转化成我们学过的三角形来求它的面积。

师:谁还有不同的方法?

师:这像我们学过的什么图形?

师:你想把圆转化成平行四边形来求它的面积,是不是?

师:刚才同学们有了两种思路,可以把圆折一折,想转化成三角形,还可以通过剪拼把圆转化成平行四边形,不论哪种方法,都是把圆转化成学过的图形来求它的面积。

师:同学们刚才也发现了,不管是折出的图形,还是剪拼出的图形,都不是很像三角形,怎样让它更接近这些图形呢?是不是得进一步研究。请每个小组在两种思路中选择一种继续研究。

师:各个小组都研究出结果了,谁想先来展示一下?请你们小组先说。

师:为什么要折这么多份?

师:你们同意吗?这就是把圆折成16份时其中的一份(贴在黑板上),和刚才平均分成4份中的一份相比,确实像三角形了。如果想让折出的形状更接近三角形,怎么办?

师:你继续折给大家看看。(学生折起来很费劲)看来同学们再继续折纸有困难了,老师在电脑上给大家演示一下。这是同学们刚才把圆平均分成16份的形状(课件演示“正十六边形”),这一份看起来像是三角形了。现在我们再把它平均分成32份,有什么变化?(课件演示,并突出其中一份的形状。)

师:你发现了什么?

师:如果分的份数再多呢?请大家闭上眼睛想象一下,如果把圆平均分成64份、128份……分的份数越来越多,那其中的一份会是什么形状?

师:同学们,用这个方法,成功地把求圆的面积转化成求三角形的面积,你们的方法真好。有不一样的方法吗?(一个小组迫不及待地举手想发言)请你们小组派个代表展示你们的成果。

师:这个方法还真不错,这个小组把圆剪成8份(把这个小组的作品贴在黑板上),和刚才剪成4份拼成的图形相比,有什么变化呢?

师:能让拼成的图形更接近平行四边形吗?

师:哪个小组分的份数更多?

(教师让另一组展示自己平均分成16份后拼成的图形。)

师:和前两次拼成的图形比,又有什么变化?

师:如果要让拼成的图形比它还接近平行四边形,怎么办?

师:我们让电脑来帮忙。大家看,老师在电脑上把这圆平均分了32份,看拼成新的图形,你有什么发现呢?(课件演示。)

师:把这圆平均分了64份,看拼成新的图形呢?

圆的面积教案 【第五篇】

教学目标:

1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

3.渗透转化的数学思想和极限思想。

教学重、难点:

圆面积公式的推导与运用。

学具:16等份和32等份的圆形、剪刀、刻度尺、一张圆形纸片。边长等于r正方形透明塑料片

教学过程:

一、设疑导入,激发动机

1.请同学们拿出准备好的圆,用手摸一摸,引导说说关于圆,都知道了什么,为学新知做好铺垫。

2.引导确定新的学习目标:还想知道圆的什么知识,适时揭示课题,(板书课题:圆的面积)

3.引导简单回忆平行四边形、三角形、梯形面积公式的推导方法,鼓励学生自己动手,运用转化法探索圆面积的计算方法。

二、动手操作,探索新知

1.猜想、引导,确定方法

师:我们曾运用转化法探索出了平行四边形、三角形、梯形面积的计算公式,相信同学们也一定能把圆转化为学过的图形,从而探索出圆面积的计算方法。同学们猜想一下,圆可能转化为哪些平面图形呢?

(学生可能会想到长方形、平行四边形、三角形、梯形等。)

师:请同学们看手中的学具,想一想把圆怎样剪?剪成什么样的图形?

(根据学生猜想,指导学生试着把圆平均分成8、16、32个相等的扇形,然后拼一拼,看能拼成什么图形。)

2.动手操作,尝试探究

师请同学们动手剪拼一下,看到底能拼成什么图形。

(学生动手操作,小组合作探究)

师谁能向大家汇报一下,你把圆拼成了什么图形?请你把拼好的图形放在实物投影上展示给大家看。(各小组汇报,共享思维成果)

3.课件演示,突破难点

师课件演示,再现将圆16等份转化成近似的长方形的过程;再将圆32等份转化成近似的长方形的过程。引导思考:

(1)圆与有近似的长方形有什么关系?

(2)把圆16等份和32等份后,拼成的图形有什么区别?

(3)如果等分份数仅需增加,结果会怎样?

师:课件进一步演示把一个圆等分成64份、128份…拼成长方形,是学生之观感知:将圆等分的份数越多,拼成的图形越接近于长方形。

4.观察比较,导出公式

师:请各小组仔细观察思考:拼成的长方形与圆有什么联系?能从中推导出圆的面积计算公式吗?

学生汇报讨论结果。使学生明确:拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于圆的`半径。

因为长方形的面积=长×宽

所以圆的面积=周长的一半×半径,也就是S=πr×r=πr2

(可能有的同学会把圆剪开后拼成了平行四边形、三角形或梯形。教师要给予肯定,并引导推出同样的计算公式。)

5.尝试运用

出示例3,读题列式,学生尝试练习,反馈评价。

提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

2.完成第116页做一做的第1题。

3.看书质疑。

三、运用新知,解决问题

1.求下面各圆的面积,只列式不计算。

直径50分米

2.一块圆形铁板的半径是3分米,它的面积是多少平方分米?

3.小明家购买一种麦田的自动旋转喷灌装置的射程是15米。请你帮忙算一算,它能喷灌的面积有多少平方米?

四、全课小结

这节课你自己运用了什么方法,学到了哪些知识?

五、课堂作业

第118页的第3题和第4题。

《圆的面积》教学设计 【第六篇】

圆的面积教学内容:圆的面积第67-68页圆面积公式的推导。例1及做一做的第1题。练习十六的第1、2、5题。教学目标:⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。          ⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。          ⒊渗透转化的数学思想。教学重点:圆面积的含义。圆面积的推导过程。教学难点:圆面积的推导过程。教学过程:一、复习。1、已知r,周长的一半怎样求?   2、用手中的三角板拼三角形,长方形、正方形、平行四边形等,并说出这些图形的面积计算公式。       s=ab       s=a2      s= ah       s= ah    s= (a+b)h二、新课。1、什么是圆的面积?(出示纸片圆让生摸一摸)    圆所占平面大小叫做圆的面积。2、推导圆的面积公式。(1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?若分的分数越多,这个图形越接近长方形。(1)找:找出拼出的图形与圆的周长和半径有什么关系?圆的半径 = 长方形的宽   圆的周长的一半 = 长方形的长    长方形面积 = 长 ×宽

所以:   圆的面积 = 圆的周长的一半×圆的半径

s = πr × r               s圆 = πr×r = πr2  3、你还能用其他方法推算出圆的面积公式吗?(1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积 是这个圆面积的 。这个三角形底是圆周长的 ,三角形的高是圆的半径。因为:三角形面积= ×底×高  162π圆面积= ×            = ×       ·r×r           =πr2(2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的 ,平行四边形的底是 ,三角形的高即一个半径,因为:平行四边形面积=底×高162π         圆面积 = ×r÷                      =       ×r×8                     =πr2还可以取3份、4份等,同学们可以一一推算。三、运用知识解决实际问题。1、例1    一个圆的直径是20m,它的面积是多少平方米?已知:d=20厘米  求:s=?       r=d÷2      20÷2=10(m)s=лr2               ×102                           =×100              =314(平方厘米)2、根据下面所给的条件,求圆的面积。r=5cm       d =       3、解答下列各题。(1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?(2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?四、作业。     课本p70第1、5题。

《圆的面积》教学设计 【第七篇】

教学内容分析:

圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。

学生情况分析:

小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,六年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以教学时应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。

教学目标:

1.认知目标

使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。

2.过程与方法目标

经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

3.情感目标

引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

教学重点:掌握圆的面积的计算公式,能够正确地计算圆的面积。

教学难点:理解圆的面积计算公式的推导。

教学准备:相应;圆的面积演示教具

教学过程

一、情境导入

出示场景——《马儿的困惑》

师:同学们,你们知道马儿吃草的范围是一个什么图形吗?

生:是一个圆形。

师:那么,要想知道马儿吃草范围的大小,就是求圆形的什么呢?

生:圆的面积。

师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)

[设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]

二、探究合作,推导圆面积公式

1.渗透“转化”的数学思想和方法。

师:关于圆的面积你想了解什么?

(什么是圆的面积?圆的面积怎样计算呢?计算公式又是什么?计算公式怎样推导?……)

我们先来回忆一下平行四边形的面积是怎样推导出来?

生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。

生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?

生:这样就把一个不懂的问题转化成我们可以解决的问题。

师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。

师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)

2.演示揭疑。

师:(边说明边演示)把这个圆平均分成4、8、16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。

师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师演示)。

师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)

[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑的演示,生动形象地展示了化曲为直的剪拼过程。]

3.学生合作探究,推导公式。

(1)讨论探究,出示提示语。

师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:

①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?

②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?

③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。

师:你们明白要求了吗?(明白)好,开始吧。

学生汇报结果,师随机板书。

同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。

(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?

(3)揭示字母公式。

师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2

(4)齐读公式,强调r2=r×r(表示两个r相乘)。

从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?

[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]

三、运用公式,解决问题

1.同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?

(再次出示牛吃草图)

师:这匹马最多能吃多大面积的草,现在会求了吗?

教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

2.教学例1。

如果我们知道一个圆形草坪的直径是20,每平方米草皮8元,铺满草坪需要多少钱?

要求铺满草坪需要多少钱,要先求什么呢?(先要求出圆形草坪的面积是多少平方米。)

我们该怎样求它的面积呢?请大家动笔算一算这个圆形草坪的面积吧!

师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。

(出示第三题)

3.小刚量得一棵树干的周长是1256c。这棵树干的横截面的面积是多少?

分析题意后学生独立完成(组织交流,评价反馈)

同学们真棒,解决完上面的三个问题后敢不敢来挑战下面的问题?

4.已知半圆中三角形ABC的高是5厘米,面积是30平方厘米,半圆的直径是多少?求阴影部分面积。

[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

四、全课小结、回顾反思

师:你们对于圆面积的疑问现在解开了吗?通过这节课的学习,你有什么收获?

知道哪些条件就可求圆的面积?

(知道半径、直径或是周长)

知道半径:S=πr2

知道直径:S=π(d÷2)2

知道周长:S=π(C÷π÷2)2

师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!

设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。

五、课后延伸

圆除了转化为长方形,还能转化为什么图形呢?

板书设计:

长方形的面积=长×宽

圆的面积=圆周长的一半×半径

S=πr×r

=πr2

圆的面积教案 【第八篇】

第一课时

教学内容

圆的面积

教材第67、第68页的内容。

教学要求

1.使学生理解圆的面积公式的推导过程,掌握求圆的面积的方法并能正确计算。

2.培养学生运用转化的思想解决问题的能力。

重点难点

重点:掌握圆的面积的计算公式,能够正确地计算圆的面积。

难点:理解圆的面积公式的推导过程。

教具学具

实物投影,各种图形的纸片。

教学过程

一、导入

1.我们学过哪些平面图形的面积公式?

2.长方形、平行四边形和三角形的面积公式分别是什么?

3.平行四边形的面积公式是如何推导的?小结:平行四边形面积公式的推导,提供给我们一种研究平面图形的面积的方法,即把所学的图形进行分割、拼摆,转化成学过的图形,用旧知识解决新问题。今天,我们还要用转化的思想研究圆的面积。

二、教学实施

1.明确圆的面积的概念。

(1)老师出示一个圆,提问:谁能联系我们学过的图形的面积说一说圆的面积是什么?

学生回答,老师归纳:圆所围成的平面的大小叫做圆的面积。

(2)圆的大小是由什么决定的?

(3)展示由“曲”变“直”的渐变图。

引导学生逐层观察圆周曲线的变化情况,把圆等分的份数越多,圆周曲线就越来越直,当我们继续分下去……圆周曲线就变成一条近似的直线段了,用这样的小块拼摆的图形就更近似于我们学过的图形。

2.学生动手操作,推导圆的面积公式。

为了研究方便,我们把圆等分成16份,圆周部分近似看作线段,其中的一份是个近似的三角形,

(1)指导学生动手摆学具,并思考几个问题:

你摆的是什么图形?

你摆的图形的面积与圆的面积有什么关系?

所摆图形的各部分相当于圆的什么?

你如何推导出圆的面积?

(2)学生动手摆学具,然后发言。

拼成长方形:

老师说明:如果分的份数越多,每一份就会越小,拼成的图形就会越接近长方形。

出示教材第67页上面的图加以说明。

拼成的近似长方形的长和宽与圆的各部分有什么关系?

从图中可以看出圆的半径是r,长方形的长是πr,宽是r。

长方形的面积=长×宽

↓ ↓↓

圆的面积=πr×r=πr2

如果用S表示圆的面积,那么圆的面积计算公式就是S=πr2。

3.利用公式计算圆的面积。

出示例1:圆形草坪的直径是20m,每平方米草皮8元。铺满草坪需要多少钱?

指名读题,让学生试做,提醒学生不用写公式,直接列算式就可以。

板书:20÷2=10(m)

×102

=×100

=314(m2)

314×8=2512(元)

答:铺满草坪需要2512元。

老师强调指出:列出算式后,要先算平方,再与π相乘。

三、课堂作业新设计

1.直接写出得数。

22= 32= 42= 52= 62= 72=

82= 92= 102= == =

2.求下面各圆的面积。

3.一块圆形铁板的半径是3分米。它的面积是多少平方分米?

4.一个圆桌桌面的'直径是米。它的面积是多少平方米?

四、思维训练

计算阴影部分的面积。(单位:分米)参考答案

课堂作业新设计

平方分米平方分米1256平方厘米平方米

平方分米

平方米

思维训练

平方分米

板书设计

圆的面积

长方形的面积=长×宽

↓ ↓↓

圆的面积=πr×r=πr2

20÷2=10(m)

×102

=×100

=314(m2)

314×8=2512(元)

答:铺满草坪需要2512元。

备课参考教材与学情分析

本部分内容是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形的面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。

课堂设计说明

1.通过实际情境,一方面使学生了解圆的面积的含义,另一方面使学生体会到在实际生活中计算圆面积的必要性。

2.教学时,强调知识迁移的过程。

平行四边形、三角形和梯形的面积公式推导过程是学生知识迁移的基础,这一环节的设计既能勾起学生对已有知识的回忆,又能启发学生运用转化的思想解决数学问题。

3.组织学生观察猜想。

先观察再猜想的方法既培养了学生的空间想象力,又发展了学生的逻辑推理能力。

18 3605802
");