鸡兔同笼教学反思【优秀4篇】
【路引】由阿拉题库网美丽的网友为您整理分享的“鸡兔同笼教学反思【优秀4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
小学数学《鸡兔同笼》教案【第一篇】
教学内容:
数学北师大版五年级上册第五单元尝试与猜测第一课时《鸡兔同笼》教材80~81页
教学目标:
1、了解鸡兔同笼问题,掌握用尝试法、假设法解决问题,初步形成解决此类问题的一般性策略。
2、通过自主探究、合作交流,让学生经历用不同的列表方法解决“鸡兔同笼”问题的过程,明确数量关系。
教学重点:
明确鸡兔同笼问题数量关系。
教学难点:
初步形成解决此类问题的一般性。
教学过程
一、历史激趣,导入新课
1、导语:老师知道我们班的同学非常喜欢读书,今天老师给同学们带来一部1500年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),里面记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(师读,课件中标注出题目中的“雉”:(读成“zhì”)野鸡;几何:多少。) 师:谁知道,这道题目是什么意思?
师:是呀,这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子。
师:古代人对这样的题目有着自己独到的见解,我们把类似于这样的问题,统统称为:“鸡兔同笼”。今天,我们就来研究中国历史上著名的数学趣题 “鸡兔同笼问题”。板书课题。(板书:鸡兔同笼)
2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看屏幕。出示题目: (鸡兔同笼问题,课件出示鸡兔同笼情境图)
二、主动探究、合作交流、学习新知:
1.师:请大家自由读题,你们都知道了什么信息?
生:鸡和兔一共有20个头。鸡兔一共有54条腿。求分别有几只?
师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有20个头。鸡兔一共有54条腿。求分别有几只?
师评:他还发现了隐藏条件,审题真细心。
2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?
学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有40条腿,而题目中是54条腿。也不可能都是兔,因为如果都是兔就会有80条腿。
3.独立思考:
(1)你想怎样解决这个问题?生举手,师:不着急说,先自己想一想!学生静想10秒。
(2)师:你们愿意自己独立解决这个问题,还是我教给你们方法你们做?好,那就请你们小组合作交流,在小组长的带领下,用自己喜欢的方法来解决这个问题。比一比,看看那个组想出的办法多,方法巧。 学生合作,教师巡视指导。
4、汇报:(汇报时,师生、生生质疑,评价)
A、师:谁愿意展示你的方法?
(1)列表法: ①逐一列表法
小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)
师:学生说出“1只鸡,19只兔子”,问“怎样计算出的腿数?”1×2+19×4=2+76=78 问“结果就是13只鸡,7只兔子吗?怎样可以知道这个结果是正确的?” 是的,可以用算式来验证:13×2+7×4=26+28=54(条)
师:谁和他的方法一样?能再讲讲吗?
师:追问“有些同学在填表时写出的腿数特别快,让我们采访一下有什么秘诀?” (因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2。反之依然,所以列表列得特别快。)
师:评价“像你们这样,采用列表的方法,不重复、不遗漏的写出所有可能的答案。这种逐一列举的方法在数学中也称为“枚举法”(板书)
小结:逐一列表法虽然比较麻烦,但是不重复不遗漏;
师:除了像他们这样逐一列举,还有不同的列表方法吗?
②跳跃列表
请小幅度跳跃列表的同学汇报;(汇报,说出是如何确定第一组数据的?计算验证后发现了什么问题?如何调整的谁还有不同的调整策略?) 问:你们觉得这种方法怎么样?(简便、快捷)
请大幅度跳跃列表同学汇报(你是怎样想到把鸡或兔的只数从 只一下调整到 只的) 请大或小幅度调整与逐一相结合的汇报(重点追问:你每一步是怎样进行调整的?根据什么进行调整的?)
小结:列表过程中根据需要我们可以有规律的小幅度跳跃,也可以根据自己的发现大幅度的跳跃;(板书跳跃) ③取中列表法
请选用取中列举法的同学汇报?追问:你是怎样想到这种列表法的(说出理由)
还有那些同学与他的方法相同或类似,你们认为这种方法有什么优势?
小结:取中列举法在逐一和跳跃的基础上直取中间数,验证后调整幅度缩小更为简便快捷(板书取中)
(2)、回顾一下我们的解题思路和方法,首先根据已知信息进行尝试猜测,然后进行计算验证,分析后进行合理调整。(相机板书:猜测、验证、调整)
(3)你最喜欢那种列表方法?理由呢?
(4)、同学们还有其他的方法解决这道题吗?
直观画图法:大家明白了吗?你觉得这种解法怎么样?
小结:画图的方法非常直观便于观察、非常容易理解。
(5)、同学们还有具有独特个性的解法吗?可以用自己的名字命名汇报。
过渡:你们在这么短的时间内就想出了这么多解决鸡兔同笼问题的方法,你们很了不起。
三、方法应用,巩固新知
师:同学们,能用你喜欢的列表方法来解决一些问题吗?
1、鸡兔同笼,有17个头,42条腿,鸡、兔各多少只? 抓住数学的本质,这里的鸡不仅仅代表鸡,这里的兔也不仅仅代表兔,运用我们所学的方法来解决一些生活中的鸡兔同笼问题,
2、在我们的生活中所遇到的一些问题,与鸡兔同笼问题有什么联系呢? 小明的储蓄罐里有1角和5角的硬币共27枚,价值元,1角和5角的硬币各有多少枚?
3、运输中的鸡兔同笼问题
用大小卡车往城市运29吨蔬菜,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?
尝试运用你喜欢的方法独立完成此题 学生汇报:
你采用的是那种列表方法 为什么要选用这种列表方法?
谁有不同的列表方法?
1)、(如分别出现两种不同的正确答案)两种答案都正确吗?那么用什么方法能使所有的正确答案都不遗漏呢?师生集体尝试逐一列表的方法。
就这道题而言,你认为它与鸡兔同笼问题有什么联系?不同之处呢?(没有限定大小卡车的总辆数)
哪种方法解决最好? 或
2)、(如出现一名同学有两个正确答案和分别一个正确答案)你认为谁的方法更好?
过渡语:老师相信同学们一定会耐心细致的做每一件事请。
四、总结全课交流收获
生活中随处可见鸡兔同笼问题,愿意告诉老师这节课你的学习收获吗 结束语:数学自古以来是中国历史上的璀璨明珠,在我们的生活中更是无处不在,我相信同学们只要敢于猜测尝试、并且不断的实践验证、调整创新,任何问题都能迎刃而解。
五、板书设计:
鸡兔同笼
列表法 思路
逐一 猜测
跳跃 验证
取中 调整
《鸡兔同笼》教案【第二篇】
教材分析:
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在四年级下册数学广角中安排“鸡兔同笼”的教学内容,其教学方法与常规课不同。数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,在教学此内容时,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
学情分析:
“鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但是在数学的应用意识与应用能力方面需要进一步培养。
教学目标:
1、使学生了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、能尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设方法的一般性。
教学重点:
会用画图法、列表法和假设法解答“鸡兔同笼”问题。
教学难点:
用合理的方法解答生活中的“鸡兔同笼”问题。
教具准备:
多媒体课件、表格等。
教学过程:
一、创设情境、揭示课题。
1.播放《奔跑吧,兄弟》主题曲,同学们,你们知道这是什么节目的主题曲吗?
2.播放视频,介绍:2015年4月24日这期的《奔跑吧,兄弟》中,各位跑男被带到有密码的房间里,陈赫遇到了这样一道题。
这道题被收在《孙子算经》中,《孙子算经》是我国古代一部非常重要的数学名著, 今天,我们就来研究中国历史上著名的数学趣题 “鸡兔同笼问题”。(板书课题)
2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看。
出示题目:鸡兔同笼一共有8个头,一共有26条腿。 鸡和兔各有几只?
二、合作探究、学习新知:
活动一:探究用猜测列表法解决“鸡兔同笼”问题。
学习方式:自学教材,小组合作交流
1.师:请大家自由读题,你们都知道了什么信息?
生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?
师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。
2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?
学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有16条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有32条腿。
(1)师:我们采用列表法得出的答案,好吗?翻开书104页,按照顺序列表试一试。
(2)说一说你是怎么想的?从尝试举例过程中,你发现了什么规律?和小组的同学说一说。
(汇报交流)
小结讲解:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。
活动二:探究用假设法解决“鸡兔同笼”问题。
学习方式:自学教材,小组合作交流。
小组1:假设全都是鸡:2×8=16(条)26-16=10(条) 10÷2=5(只)??兔子 8-5=3(只)??鸡 谁有不懂得问题要问他?你们看看是不是这样:看演示板书“假设法。”
师:除了可以假设都是鸡,还可以怎样假设呢?
小组2:引导学生说出都是兔,并演示。
师:实际上,你们刚才的这些方法都运用了一种数学思想。你们知道是什么思想么?
师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。
小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)
3、发散思考、加深理解。
下面我们来帮陈赫找到他房间的密码,解放他吧!
出示:鸡兔同笼,有35个头,94条腿,鸡兔各有几只?
师:我们发现课本上的假设法理解起来比较抽象,现在大家换一种假设法来思考。你们看,这样行不行?
生:是什么样的假设法,让我们先睹为快!
师:是这样的,如果让每只兔子都立起两条腿,这时,鸡和兔的脚数是相等的,接下来会出现什么样的情况呢?
生:每个头有两条腿,35个头是70条腿。(94-70)少了24条腿,正好可以求出兔子的只数,24除以2等于12。
生:鸡的只数为:35-12 = 23(只)。
师:还有别的做法吗?怎样解答?
生:把每只鸡的翅膀看成是两条腿。这样每只头对应的是4条腿。共有140条腿,多出46条腿,多出的是23只鸡的腿,那么,兔的只数
鸡兔同笼教学设计【第三篇】
教学内容:
人教版《数学》四年级下册P103——P104页数学广角——《鸡兔同笼》。
教材分析:
“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。通过两种方法的探究让学生感知解决问题的多样性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。
3、在解决问题的过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。
教学重点:
1、理解掌握解决问题的不同思路和方法。
2、学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。
教学难点:
理解掌握假设法,能运用假设法解决数学问题。
教学具准备:
表格
教学过程:
一、导入
师生谈话导入新知
(设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。)
二、探究新知
1、质疑:提问:
(1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?
(2)鸡和兔相比:什么比什么多?多多少?
(3)出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?
(4)尝试解决,交流想法;
(5)出示交换已知条件以后的题目。
(设计理念:通过对比两种动物的异同,引出基础题目,让学生经历观察、比较、分析、归纳概括的过程,同时也让学生了解鸡兔腿数数量的差别,每只兔比每只鸡腿数多2,这为下一教学环节,猜测、调整和有序整理探究列表法奠定基础,同时也为探究假设法做好铺垫。)
2、教学例1
(1)出示例题1。
师:请同学们读一读,和前面的题目一样吗?什么地方不一样?
请同学们大胆的猜一猜鸡兔各有几只?猜的时候要注意什么?(共有8个头)
(设计理念:通过对比两题的已知和未知条件的不同培养学生认真审题的良好学习习惯,同时也为后面的猜测、有序整理、验证做好铺垫。)
(2)学生自由猜测。
师:大家的猜测有很多种,听起来有点乱,我们按顺序整理一下(出示表格)。
(3)验证猜想。
(4)观察发现规律。
(5)总结概括:在数学中这种方法叫列表法。(板书)。
(设计理念:通过猜测让学生感知在解决类似问题时这是最基础的方法,然后通过列表法进行验证让学生感知有序整理可以找到问题的答案。最后通过观察、交流探讨发现鸡兔数量的变化引起腿数变化的规律,这样也积累了学生解决问题的经验。)
质疑:如果遇到鸡兔数目多的时候,这种方法行吗?怎么办呢?
3、探讨假设法:
a、假设全是兔。
1师以童话故事的形式引入全是兔的情境。
2集体探究,引导交流。
b、假设全是鸡。
1师再次继续童话故事引入全是鸡的情境。
2小组独立探究交流假设全是鸡的计算方法。
3指名小组展示并叙述计算过程。
4小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)
5延伸:其实解决“鸡兔同笼”的问题还有其它方法,同学们如果有兴趣的话下来以后可以了解一下。
(设计理念:通过情境假设,让学生感知数学的`趣味性,提高了学生探究新知的兴趣,也为假设法的探究增添了趣味。同时,学生又经历了自主探究、合作交流的学习过程,体验了解决问题的方法的多样性。为后面灵活的解决问题打下了基础。)
三、练习巩固
出示练习题。
四、课后总结
(设计理念:学生通过练习一方面加强了对列表法、假设法的巩固,另一方面学生运用所学知识灵活的解决问题,增强了学生的应用意识;通过小结收获整理课堂新知,培养学生归纳总结的能力。)
板书设计:
鸡兔同笼
1、列表法
2、假设法
鸡兔同笼教学设计【第四篇】
教学目标:
1、了解鸡兔同笼问题,掌握用列表法、假设法的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。
2、让学生在自主探索、尝试、合作学习的过程中,经历用不同方法解决鸡兔同笼问题的过程,使学生体会用方程解鸡兔同笼问题的一般性。
3、了解我国古人解鸡兔同笼问题的方法,感受其趣味性。
教学重点:
尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。
教学难点:
在解决问题的过程中,培养学生的逻辑思维能力。
教法:分析、引导
学法:自主探究
课前准备:
多媒体。
教学过程:
一、定向导学:2分钟
1、师:同学们,你们知道吗,大约在1500年前,我国古代的数学名著《孙子算经》中,记载着一道有趣的数学题:(课件出示,题略)你们知道这道题的意思吗?
生:……(课件演示)
师:这就是有趣的“鸡兔同笼”问题。(板书课题)今天我们就一起研究这一问题。
2、学习目标:
掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。
二、自主探究:8分钟
内容:课本p104例1的(1)
时间:5分钟
方法:边看书边完成下面要求:
1、“鸡兔同笼”这四个字是什么意思?
2、书上用了()种方法来解决这个问题。
3、我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些信息?
生理解:
(1)鸡和兔共8只;
(2)鸡和兔共有26只脚;
(3)鸡有2只脚;
(4)兔有4只脚;
(5)兔比鸡多2只脚。(课件演示)
师:那问题是什么?
生:鸡和兔各有多少只?
3、猜一猜:
师:请同学们猜一猜鸡和兔可能各有多少只?(学生猜测)还有其它的猜测吗?
4、介绍列表法:
师:你们猜出的结果鸡和兔的总只数都是8只,但是你们猜想的结果都正确吗?到底哪个是正确的呢?下面请同学们把你们的猜想整理到这张表格中,并进行调整,看看哪个结果才是共有26只脚。(学生活动)
5、观察发现,列式计算
三、合作交流:5分钟
假设全是兔,怎样解决?试一试。
四、质疑探究:5分钟
解决鸡兔同笼这类问题,有几种假设的方法?
五、小结检测:20分钟
1、小结方法:
同学们真了不起,刚才我们在解决鸡兔同笼的问题时,用到了多种方法:列表法,假设法。
2、检测:
a、问答:
(1)如果老师让你们解决《孙子算经》中的原题,你会选哪种方法解决呢?
为什么不选择列表法?难?为什么难?(要列举的情况很多)有没有好的办法?(有没有不用列举那么多就能找到答案呢)
(2)如果一定要你用列表法解答你有什么办法?学生讨论。(教师引导列表折半调整。)
(注:如果前面出现了折半列表,就把这个环节提前讲。)
(3)其实在我们生活当中类似于鸡兔同笼的问题有很多的,这些问题都可以用不同的方法去解决,下面请同学们用自己喜欢的方法做一些题目?
b、解决问题
(1)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?
(2)全班一共有38人,共租了8条船,每条大船乘6人,每条小船乘4人,每条船都坐满了。问大船和小船各多少条?
(3)新星小学”环保卫士”小分队12人参加植树活动。男同学每人栽了3棵树,女同学每人栽了2棵树,一共栽了32棵树。男女同学各几人?
作业:p106;1、2、3。
板书:
鸡兔同笼
假设全是鸡,就有脚8×2=16(只)
比实际少26—16=10(只)
一只鸡比一只兔少4—2=2(只)
兔子:10÷2=5(只)
鸡:8—5=3(只)
上一篇:教学反思(精编5篇)
下一篇:教学工作总结范文反思「」优秀4篇