《椭圆》数学教学反思【热选4篇】

网友 分享 时间:

【前言导读】此篇优秀教学范文“《椭圆》数学教学反思【热选4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

《椭圆》数学教学反思【第一篇】

本学期学习选修1-1《椭圆及其标准方程》,上完这节课后我认真地进行了反思,具体内容如下:

一、教学过程回顾

1、引入:(师生共同做实验)

手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的两点,当绳长大于两点间的距离时,用铅笔把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆。

分析:

(1)轨迹上的点是怎么来的?

(2)在这个运动过程中,什么是不变的?

2、新课:

(1)归纳总结出椭圆的定义。(教师启发引导,学生回答)

(2)推导椭圆标准方程。(推导之前先回顾求轨迹方程的方法)

(3)椭圆标准方程。(教师板演方程,学生记忆方程)

(4)讲解例题。(教师启发引导,板演过程,学生分析,思考)

(5)学生做练习。(学生板演,师生共同纠错)

(6)小结。

(7)布置作业。

二、成功之处:

1、教学方法上:结合本节课的具体内容,确立启发探究式教学、互动式教学法进行教学。,体现了认知心理学的基本理论。

2、学习的主体上:课堂不再成为“一言堂”,学生也不再是教师注入知识的“容器”,课堂上为学生的主动参与提供时间和空间,让不同程度的学生勇于发表自己的各种观点(无论对错),真正做到了:凡是学生能够自己观察的、讲的(口头表达)、思考探究的、动手操作的,都尽量让学生自己去做,这样可以调动学生学习积极性,拉近师生距离,提高知识的可接受度,让学生体会到他们是学习的主体。进而完成知识的转化,变书本的知识为自己的知识。

3、学生参与度上:课堂教学真正面向全体学生,让每个学生都享受到发展的权利。在我的启发鼓励下,让学生充分参与进来,进行交流讨论,共同进步。

4、“三维”课程目标的实现上:既关注掌握知识技能的过程与方法,又关注在这过程中学生情感态度价值观形成的情况。

5、学法指导上:采用激发兴趣、主动参与、积极体验、自主探究的讲解讨论相结合,促进学生说、想、做,注重“引、思、探、练”的结合,鼓励学生发现问题,大胆分析问题和解决问题,进行主动探究学习,形成师生互动的教学氛围。

三、不足之处:

1、本节课课堂容量偏大,从而导致学生在课堂上的思考的时间不够,课堂时间比较紧张。因此今后要合理地安排每一节课的课堂容量,给学生更多的思考时间和空间,提高课堂的效果。同时还要重视探究题的作用,因为班上有一部分同学基础比较扎实,而且对数学也比较感兴趣,出一些比较难的思考题,能够让这部分学有余力的同学能有所提高。

2、学生练习时间不够充分,耽误了小结时间。

3、一部分学生的计算能力还不够熟练,缺乏简化计算的能力,今后还要继续加强对学生这方面能力的培养。

总之,在课堂教学中我“以知识为载体,以思维为主线,以能力为目标,以发展为方向”,展现知识的发生形成过程。采取以学生发展为本,明确本节课的学习目标,以学习任务驱动为方式,以椭圆标准方程的求法为中心。穿插研究性教学尝试,体现了“学生是学习主体,教师是引导者、参与者、组织者、合作者”的新课程理念。有利于改变学生的学习方式,有利于学生自主探究,有利于学生的实践能力和创新意识的培养。达到了教学目标,优化了整个教学过程。但是,在教学中还是存在很多不足的,在以后的教学中还要继续努力,不断总结经验教训,提高自身的教学水平。

高中数学椭圆教案【第二篇】

一、教材分析

(一)教材的地位和作用

本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。

(二)教学重点、难点

1.教学重点:椭圆的定义及其标准方程

2.教学难点:椭圆标准方程的推导

(三)三维目标

1.知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。

2.过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。__

3.情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。

二、教学方法和手段

采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。

“授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。

三、教学程序

1.创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。

2.画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。

3.教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。

4.椭圆定义:注意定义中的三个条件,使学生更好地把握定义。

5.推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在y轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。

6.例题讲解:通过例题规范学生的解题过程。

7.巩固练习:以多种题型巩固本节课的教学内容。

8.归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。

9.课后作业:面对不同层次的学生,设计了必做题与选做题。

10.板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。

四、教学评价

本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。

《椭圆》数学教学反思【第三篇】

椭圆是圆锥曲线的重要组成部分,椭圆学好了,有助于以后研究双曲线及抛物线,因为他们的研究方法是一样的。所以初学圆锥曲线一定要先把椭圆的基础给打好了。

在讲椭圆之前,应该先介绍一下研究所有曲线的方法和过程,即先建立曲线方程然后根据方程研究性质,这就是解析几何的特征,用代数方法研究几何问题,先让学生做到心中有数。因此曲线方程的建立是很重要的,而坐标法正是解决这个问题的重要方法。要掌握坐标法的“三步曲”:建系设点,找到关系进行代数运算,运算结果翻译成几何结论。

椭圆定义的形成是非常重要的,可以让学生深刻的记着它的几何特征有助于以后解题。引入部分可以这样设计:大家对椭圆都有一个感性的认识,觉得比圆稍扁一点的就是椭圆,这是不准确的。究竟满足什么条件才是椭圆,你能画出一个椭圆吗?接着画椭圆就是这节课的一个重要环节,要有教具的准备:定长的线,硬纸板和图钉。思考:到一个定点距离等于定长的点的集合是?到两个定点距离等于定长的点的集合又是什么呢?学生亲自动手操作,体会椭圆的形成过程及满足的条件。

第一个环节完成以后,第二个重要环节就是椭圆标准方程的产生,按照坐标法建系设点,一定让学生自己化简,亲自动手体验的过程不能少,因为解析几何就是考察学生的计算能力的。化简的过程中可以给与学生鼓励,看谁细心认真,尽管过程繁琐,但一定不要放弃,坚持到最后的人肯定能化简出来取得成功。另外教师一定要在学生动手之后,再演示一遍以达到纠错的目的,使学生印象深刻。这样才会收到一个良好的效果。

这堂课学生可以参与到教学的各个环节,学生主体性可以得到充分的发挥,而且还有情感价值观的锻炼,非常有价值。

高中数学椭圆教案【第四篇】

一、教学目标:

知识与技能目标:准确理解椭圆的定义,掌握椭圆的标准方程及其推导。

过程与方法目标:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力。

情感、态度与价值观目标:通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美,通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。

二、教学重点、难点:

重点是椭圆的定义及标准方程,难点是推导椭圆的标准方程。

三、教学过程:

教学环节

教学内容和形式

设计意图

复习

提问:

(1)圆的定义是什么?圆的标准方程的形式怎样?

(2)如何推导圆的标准方程呢?

激活学生已有的认知结构,为本课推导椭圆标准方程提供了方法与策略。

讲授新课

一、授新

1.椭圆的定义:(略)

活动过程:

操作-----交流-----归纳-----多媒体演示-----联系生活

形成概念:

操作:

<1>固定一条细绳的两端,用笔尖将细绳拉紧并运动,在纸上你得到了怎样的图形?

在动手过程中,培养学生观察、辨析、归纳问题的能力。

在变化的过程中发现圆与椭圆的联系;建立起用联系与发展的观点看问题;为下一节深入研究方程系数的几何意义埋下伏笔。

教学环节

深化概念:

注:1、平面内。

2、若,则点P的'轨迹为椭圆。

若,则点P的轨迹为线段。

若,则点P的轨迹不存在。

联系生活:

情境1.生活中,你见过哪些类似椭圆的图形或物体?

情境2.让学生观察倾斜的圆柱形水杯的水面边界线,并从中抽象出数学模型。(教师用多媒体演示)

情境3.观看天体运行的轨道图片。

教学内容和形式:

准确理解椭圆的定义。

渗透数学源于生活,圆锥曲线在生产和技术中有着广泛的应用。

设计意图:

2.椭圆的标准方程:

例:已知点、为椭圆的两个焦点,P为椭圆上的任意一点,且,其中,求椭圆的方程

活动过程:点拨-----板演-----点评

一般步骤:

(1)建系设点

(2)写出点的集合

(3)写出代数方程

(4)化简方程:

<1>请一位基础较好,书写规范的同学板演。

(5)证明:讨论推导的等价性

掌握椭圆标准方程及推导方法。

培养学生战胜困难的意志品质并感受数学的简洁美、对称美。

养成学生扎实严谨的科学态度。

应用

举例

教学环节

二、应用

例1.(1)椭圆的焦点坐标为:

(2)椭圆的焦距为4,则m的值为:

活动过程:思考-----解答-----点评

例2.已知椭圆焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点的距离的和等于10,求椭圆的标准方程

活动过程:思考-----解答-----点评

变式<1>已知椭圆焦点的坐标分别是(-4,0)(4,0),且经过点,求椭圆的标准方程。

求椭圆的标准方程

活动过程:思考-----解答-----点评

认清椭圆两种标准方程形式上的特征。

课堂小结:

提问:本节课学习的主要知识是什么?你学会了哪些数学思想与方法?

活动过程:教师提问-----学生小结-----师生补充完善。

让学生回顾本节所学知识与方法,以逐步提高学生自我获取知识的能力。

作业布置:

作业:教材第95页,练习2、4,第96页习题8-1,1、2、3、

探索:平面内到两个定点的距离差、积、商为定值的点的轨迹是否存在?若存在轨迹是什么?

分层次布置作业,帮助学生巩固所学知识;为学有()余力的学生留有进一步探索、发展的空间。

21 1255013
");