用字母表示数教学反思【精彩5篇】
【阅读指引】阿拉题库网友为您分享整理的“用字母表示数教学反思【精彩5篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
用字母表示数教学反思【第一篇】
案例:人教版五年级上册《用字母表示数》第一课时
教材分析:人教版《用字母表示数》在例题安排上具体如下:
例1主要解决用字母可以表示某个具体的、特定的数;
例2解决用字母表示运算定律,使学生体验用字母表示运算定律的简明性和优越性,并感悟到字母不但可以表示一个特定的数,而且可以表示一般的数;
例3则是重点教学怎样用字母表示计算公式,怎样把已知数据代入公式求值;
例4教学用含有字母的式子表示数量关系和一个量。
在课时安排上,将例1、2、3划分为第一课时,例4划分为第二课时。
基于此,我将本课第一课的教学目标分解如下:
1.知识技能:
(1) 理解用字母可以表示数;(2)能用含有字母的式子表示简单的数量关系和计算公式;(3)掌握含有字母的乘法式子的简写方法;(4)初步学会根据字母所取的值,求含有字母式子的值
2.过程方法:
经历把简单的实际问题用含有字母的式子进行表达的抽象过程,培养学生的抽象思维能力和灵活应用意识,发展符号感。
3.情感态度与价值观:
在解决问题中体会数学与生活的联系,体会代数符号表示实际问题中数量关系的概括性和简洁性,从而进一步感受学习数学的价值。
初次实践与质疑:
按照预设的教学环节,我进行了第一次教学。但教学情况却不容乐观。主要体现在孩子们在前半节课还是兴致盎然地体验着用字母表示数的简洁,后半节课却发现,在简写及代入求值技能掌握上学生觉得困难重重,教学时间怎么也来不急,以至于到后来变成了赶鸭子上架,练、写,再练,再写,丝毫没有了学习的快乐。到头来,学生非但没能完整地经历用字母表示数的过程,需要掌握的简写、代入求值的技能也是掌握得一头雾水。
为什么我根据教材的安排制定的教学目标却与实际达成目标相差甚远?学生学得那么着急,那么困难,是不是我的教学目标制定上存在问题,加重了他们的负担?教材这样划分课时是不是有它的弊端所在?
思 考:
作为《用字母表示数》的第一课时,我要留给学生最重要的是什么?
学生在之前的学习过程中有过用字母表示数的模糊表象,但不完整,更谈不上深刻。作为第一课时,本节课应该带学生完整地经历把简单的实际问题用含有字母的式子进行表达的抽象过程,进而体会用字母表示数的简洁性和概括性,发展符号感。
用字母表示数实现的是由具体到抽象的过程,对于学生来说是一个难点,需要重点渲染的;而代入求值,根据公式计算某一具体图形的面积和周长则是一个特殊化的过程,这其中还包括一定的书写格式与要求。一会儿要让学生经历具体到抽象的过程,一会儿又要让学生实现从抽象到具体的过程,这对于短短40分钟的数学课堂是难以逾越的鸿沟。
显然,我的教学目标看似面面俱到,实际却是纸上谈兵。教材的课时安排与学生的实际需求存在着一定的距离。
基于以上考虑,我大胆调整了教材的编排顺序,在课时安排上,将例1、2、4划分为第一课时,例3划分为第二课时。将第一课时的教学目标定位如下:
1.让学生经历和理解用字母表示特定的数——般的数——一定范围的数——数量关系一过程上,初步掌握简写方法。
2.经历把简单的实际问题用含有字母的式子进行表达的抽象过程,培养学生的抽象思维能力和灵活应用意识,发展符号感。
3.在解决问题中体会数学与生活的联系,体会代数符号表示实际问题中数量关系的概括性和简洁性,从而进一步感受学习数学的价值。
把理解用字母表示变化的数和数量关系作为本节课的重难点。第二课时作为一节练习课,并重点训练代入求值的方法。
再次实践:
按照这样的思路,我再次对第一课时进行了教学。在教学过程中,顺着学生的认知,由生活中的字母表示的是缩写的含义迁移到数学中的单位名称的字母也是缩写得来的,话锋一转:字母在数学中的运用更多的体现在其他方面,自然链接到数学中用字母可以表示特定的数、一般的数、一定范围的数,含有字母的式子可以表示量和数量关系的教学中。在学生完整地经历了用字母表示数的过程中,重点对于简写方法进行突破与练习。最后对本节课进行综合练习,并对课堂进行挖掘,补充了用字母表示数的历史由来。
整节课不再是磕磕碰碰,赶鸭子上架,而是将生活情境贯穿本课始终,把数学与生活巧妙结合,在一系列有梯度的教学活动,让学生亲身经历知识的形成和发展过程进而培养数学思考的能力。既使本节课的知识得到巩固,更让学生明白学习数学是为了解决生活中存在的问题,生活中处处有数学,学数学就是生活的需要。
反思:
用字母表示数教学反思【第二篇】
教材设计了多个情境,使学生体会用字母表示数的作用。第一个情境是青蛙儿歌,通过儿童熟悉的儿歌,引出用字母表示数,即n只青蛙n张嘴。第二个是妈妈和淘气年龄关系的情境,如果淘气年龄用字母a表示,那么妈妈的年龄可以用a+26表示。第三个是用小棒摆三角形的情境,引导学生用字母a表示三角形个数,用a×3表示小棒根数,使学生进一步体会字母表示数的意义。
三个不同内容的情境,从不同的角度引导学生体会用字母表示数;“儿歌”情境是直接用字母表示数;“年龄”情境和“摆小棒”的情境不仅用字母直接表示一个量,同时又用含有字母的式子表示另一个量。通过三个情境的学习,使学生充分体会用字母表示数的方法和作用。
根据知识点的连接性,教学时,可以把教材第二个情境图和第三个情境图教学顺序进行对换,并对教材有所拓展。
教学流程
一、创设情境,揭示课题
1.出示书中情境图1
2.让学生读一读“青蛙儿歌”。
3.引导提问:这首儿歌中的数据有什么特点?你能用一句话表示这首儿歌吗?
学生可能说:(1)有多少只青蛙就有多少张嘴。(2)青蛙的数量与它的嘴巴的数量是一样的。(3)有几只青蛙就有几张嘴。
4、揭示课题:几只青蛙就有几张嘴,这里的“几”表示数量不一定,我们可以用字母来表示。
板书: n 只青蛙 张嘴。估计,学生会争先恐后地回答,n只青蛙 n张嘴。
[策略建议:估计学生会很有兴趣地朗读这首儿歌,并且会继续补充读:4只青蛙4张嘴,5只青蛙5张嘴……当学生感觉这首儿歌怎样也读不完时,教师引导学生当数量数不完时,我们可以用字母来表示数。]
二、自主探索,解决问题
1.出示书中情境图3
2.让学生观察情境图,并根据图中文字说明,自主探索如何表示需要小棒的根数。
3、小组交流,说说自己的想法。
4、汇报反馈。
(1)请个别学生说一说是怎样想的。
教师出示板书,结合说明。
(2)指导书写。
先提问a×3还可以怎样写,再让学生尝试,最后教师明确说明:a×3写作3?a或3a,数字通常写在字母前面。
[策略建议:让学生独立进行尝试,充分暴露学生的思维过程,培养学生知识迁移的能力。如果a×3有的学生写成,必须说明3?a和各自的表示意义。3a表示3个a或a个3相加,而是表示代号(并举例说明)]
三、启发思考,建立模型
1.出示书中情境图2
2.让学生观察情境图,说一说,你从图中得到什么信息。
学生可能说:(1)妈妈的年龄比淘气大26岁。(2)淘气的年龄比妈妈小26岁。
3.自主探索:淘气和妈妈的年龄各怎么表示。
4.汇报反馈。
方法可能有:(1)淘气的年龄“a”岁,妈妈的年龄“a+26”岁。(2)妈妈的年龄“a”岁,淘气的年龄“a-26”岁。(3)淘气的年龄“n”岁,妈妈的年龄
“n+26”岁。……
[策略建议:给足时间,让学生经历方法的探究过程,并深入学生之中关注他们探究的过程。(1)如果有学生提出,用字母“a”表示妈妈的年龄,那么“a-26”表示淘气的年龄,应给予表扬,鼓励他们勇于创新,敢于求异。如果没有学生回答这种表示方法,教师应启发学生思考。(2)如果学生只用a来表示,就要追问还可以用其它字母表示吗?让学生充分体验用字母表示数的简洁性和灵活性,建立用字母表示数的模型。]
四、巩固练习,拓展延伸
1.学生独立完成书中“试一试”的第1、2题。
2.拓展题。
出示:如果淘气比笑笑多2岁,淘气、笑笑的年龄各怎样表示?3年后,淘气、笑笑的年龄各又怎样表示?
[策略建议:在用教材的过程中,不拘泥于教材,可以创造性拓展教材。这样有利于提高学生的兴趣,发展学生的思维。]
五、回顾总结,反思评价
用字母表示数教学反思【第三篇】
关键词小学数学 师本对话 师生对话 生本对话 生生对话
《义务教育数学课程标准(2011年版)》在“课程基本理念”中明确指出:教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生的学与教师的教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。克林伯格认为,在所有的教学中,都进行着最广义的对话,不管哪一种教学方式占支配地位,相互作用的对话都是优秀教学的一种本质性标识。对话,按照它的原始意义,是指人与人之间的一种谈话方式。对话教学倡导在教师指导下,师本、师生、生本、生生之间进行多元对话,这是一种以学生为中心的学习。诚然,数学课堂的对话,是一种教学对话,也是教师、学生和作为文本的教材之间的一种精神上的相遇,通过两者之间对话式的相互作用,达到学生自主和自由发展的目的。现以苏教版四年级下册《用字母表示数》的教学为例,谈谈对话教学理念下我的数学课堂教学实践与思考。
一、师本对话——寻找“对话点”
法国教育家保罗·弗莱雷曾经说过:“没有对话,就没有了交流,也就没有了真正的教育。”文本(教材)是教学的依据,也是教师开展教学活动的有效载体。对话教学理念确立了文本是第一资源、第一认识对象的重要地位。师本对话,就是指教师以教材为依托,精心研读教学内容,然后根据学情,制订教学目标,细化教学流程,寻找课堂中的对话点。
通过研读教材,我发现四年级的《用字母表示数》是学生学习方程、不等式、函数的基础,也是其学习初中代数的基础。教材中通过摆小棒的练习,引出用字母还可以表示变化的数。从具体的数过渡到用字母表示数,这是小学生数学认知上的一次飞跃。同时,教材中还通过用字母表示正方形、长方形周长、面积等计算公式、运算定律,使学生理解含有字母的式子除了表示结果,还可以表示数量关系、计算公式等。
为了了解学生的学习基础,我进行了课前测试,设计了如下问题:生活中你见过表示特定意思的字母的缩写形式吗?请举例说明;生活中你见过用一个字母来表示一个数吗?请举例说明;看到课题《用字母表示数》,你想知道些什么?通过与学生的交流了解到:生活中,学生已经比较熟悉用字母的缩写形式来表示特定的意思,比如CCTV(中国中央电视台)、KFC(肯德基)、WC(厕所)、GPS(全球定位系统)等。同时,学生见过扑克牌,玩过24点,知道里面的A既可以表示1,还可以表示11。有些学生已经知道用字母可以表示特定的数。看到课题,95%的学生提出了如下问题:为什么用字母表示数?怎么用字母表示数?哪些字母可以表示数?还有的学生甚至提出了比较有价值的问题:用字母表示数后,做题会不会简单些?用字母表示的数能否参与加减乘除的运算?
进行过师本对话,还有了真实的学情分析,我寻找到了“对话点”——数学中的字母究竟可以表示哪些数?含有字母的式子与具体的算式、用文字叙述的计算公式相比有什么优势和特点?进一步明确了本课的教学目标。
建构主义学习理论强调学习者以自己的知识经验为背景分析、检验和批判新知识,并对原有的知识进行再加工和再创造。师本对话,让我拥有了课前预设的“基本点”,又找到了课堂上的“对话点”。
二、师生对话——捕捉“生长点”
苏格拉底开展教育活动时,没有固定的教材和课堂,他从不直接把结论告诉学生,而是通过提出问题并引导学生回答,最后得出正确的结论,我们把这种方法称为“苏格拉底方法”。苏格拉底的学生并没有直接从教师那里获得正确结论,而是在与苏格拉底的语言交流中自我生成了正确结论。可见,沟通与合作是对话教学的生态条件。在教和学双方的沟通与合作中,对话的精神得以体现。强调师生对话,乃是倡导教师更多地充当向导,以恰当的方式与学生进行平等的心与心的交流,捕捉课堂上的“生长点”,成为学生学习的伙伴。
学起于疑,疑起于思。《用字母表示数》一课中,对于字母可以表示特定的数和变化的数,学生似乎不难理解,难理解的是含有字母的式子既可以表示数量,还可以表示数量关系。因此,我设计了一个猜年龄的环节。
先提问学生的年龄,让学生猜教师的年龄,学生随意猜,教师再提供信息:老师比学生大35岁。让学生推算教师的年龄,接着,教师追问:如何用一个式子来表示出老师任意一年的年龄?学生经过讨论,想出了用n表示学生的年龄,那么,老师的年龄可以用(n+35)来表示。在此基础上,让学生思考:这里的字母可以指哪些数?能代表200吗?让学生明确:用字母表示数,有时要根据具体的需要,符合生活的规律。教师并不满足于这些答案,让学生观察:(n+35)除了表示老师的年龄,还能看出什么?(老师与学生的年龄差)再及时追问:如果老师的年龄用x来表示,那么,学生的年龄如何表示?让学生得出(x-35),再来比较(n+35)与(x-35)有什么不同,有什么联系。
此环节的设计,一方面利用了课堂资源(师生的年龄),另一方面,在不经意的猜一猜、写一写、议一议、比一比中理清了概念的本质。当学生的年龄变化时,教师的年龄也发生了变化,但是,当学生的年龄是一个固定的数字时,教师的年龄也确定了(且是唯一的),而用字母表示学生的年龄后,教师的年龄、教师与学生的年龄差都可以用含有字母的式子来表示。这样就可以概括表示出教师任意一年的年龄了。在师生对话中,通过提问、追问、讨论,学生慢慢理解了含有字母的式子具有“概括性”这一特点。
三、生本对话——弹出“生成点”
生态课堂,尤其强调学生的自主学习,倡导在“开放”和“温暖”的话语环境中,实现生生之间的沟通与交流,让学生的思维激烈碰撞,让观点充分表达,让个性完全释放,让课堂生态因子充分活跃起来,实现学生之间“兵教兵”“兵练兵”,最后达到“兵强兵”的自主学习目的。因此,学生自己能看懂、读懂的,教师要大胆放手,让学生带着问题自学。
本课中,字母与数字相乘、字母与字母相乘的简写环节,我让学生与文本对话,带着3个问题自学书本:(1)在含有字母的式子里,数和字母中间的乘号怎么处理?请举例说明;(2)字母和字母相乘要注意什么?请举例说明;(3)1与任何字母相乘时,怎么简写?请举例说明。之后,结合正方形的周长与面积计算公式的简写,让学生说说看书后对3个问题的理解。
接着,安排了两个练习:
(1)独立思考:省略乘号,写出下面的式子。
4×b= a×c= 1×y= 2×x= x·x=
(2)独立判断:下面的说法对吗?为什么?
①a+7可以写成7a。( )
②1×t可以写成t。( )
③b×c可以写成b·c,也可以写成bc。( )
④M×M可以写成2M。( )
通过集体交流,我发现学生对于字母与字母相乘的简写还是有些问题,会将2x与x2以及M2与2M混淆,这些正是学生学习的难点。因为x的平方是一个新的知识点,学生第一次接触,难免会把2x与x2混为一谈。生态课堂要求教师关注学生的原生态作品,然后进行正确的分析,及时调整下一步的教学流程。因此,我充分利用学生的这些错误资源,让学生再读课本,并进行对比分析,帮助他们理解2x与x2的不同。
此环节的设计,相比教师直接揭示三条简写规则再反复练习要好得多。与书本的对话,让学生收获的不仅仅是良好的阅读习惯,更重要的是,课堂上出现的问题来自学生真实的想法。
四、生生对话——形成“拓展点”
对话教学理论认为:对于学生来说,学习不再是被动的接受,而是发生在对话与合作之中的知识生成。学生之间对话的意义就在于“来自他人的信息为自己所吸收,自己的既有知识被他人的信息唤起了,这样就可能产生新的思想。在同他人的对话中,正是出现了跟自己完全不同的见解,才会促进新的意义的创造”。这里的生生对话,包括两个方面:一是教学过程中学生与学生之间随时出现的对话交流;二是学生的自我对话、自我反思。强调生生对话,也就意味着在教学过程中,依据生生对话,教师打破预设的教学程序,及时调整预定的路线,给予学生的思维以充分生成的空间,形成知识的“拓展点”。
通过新课前测,我了解到学生对于新知的期待。于是,在课件中,我及时摘录了学生有代表性的问题,并在课堂结束环节向大家展示:(1)为什么用字母表示数?(2)哪些字母可以表示数?(3)字母可以表示哪些数?字母表示的数能否进行加减乘除运算?(4)什么时候要用字母表示数?并邀请提问的四位学生说说学习了本课以后的收获,自己回答课前的提问,其他学生补充。这个环节,学生很感兴趣,生生之间各自敞开心扉,真诚交流,全面进行知识梳理,思维不断走向深处,从而超越预先设定的目标,形成“拓展点”和“超越点”。
同时,在课后检测这一环节中,我再次设计了三个问题:通过学习《用字母表示数》,你有什么收获?现在还有什么疑问?说说今天课堂里印象最深的一次师生对话,或者同学之间的一次对话。请你对老师的课堂教学作一个简单的评价(可以肯定老师的教学方法,也可以对老师的课堂教学提一个建议)。翻阅学生的作业,我欣喜地看到:90%以上的学生都明白了用字母既可以表示特定的数,也可以表示变化的数;用字母表示数更简单,能概括出一些情况(如:摆三角形中需要的小棒根数);26个英文字母都可以表示数,用字母表示数更简单明白……
用字母表示数教学反思【第四篇】
教学目标
知识与技能:了解单项式的概念,掌握单项式的系数与次数。
过程与方法:通过学生的观察、分析、归纳等活动,学习新知识,逐步提高学生概括能力。
情感与态度:通过对问题的共同探讨,培养学生的协作精神。
教学重、难点
重点:单项式的概念及系数与次数的掌握。
难点:识别单项式的系数与次数。
教学过程
师:(出示投影片1,创设情境,激发求知欲。)同学们!我校有一块长方形的绿地,长为a米,宽为b 米,现准备将其长增加m米,宽增加n米,你能用几种方法表示扩大后绿地的面积?不同的表示方法之间有什么关系?请同学们思考后回答。
生1:ab+bm+an+mn.
生2:b(a+m)+n(a+m).
生3:a(b+n)+m(b+n).
生4: (a+m)(b+n).
师:大家从不同的角度进行分析得到不同的式子,其结果都是正确的,那么它们之间有什么关系,要回答这个问题,需要用到本章将要学的内容。(引导学生活动,揭示知识的产生过程,为本节课的教学做好铺垫。)
首先,请同学们思考下列问题:等列式表示下列问题,看谁答得又快又准。(出示投影片2.)
1.有一边长为x的正方形卡片的周长是__________.
2.一辆汽车的速度是v千米/时,行驶t小时所走过的路程__________千米。
3.棱长为a的正方体表面积是__________;体积是__________
4.设n表示一个数,则它的相反数是__________.
5.若三角形一边为a,并且这边上的高为h,这个三角形的面积__________
6.某种手机卡的计费方法,是通话每分钟元,通话m分钟话费__________元。
生:(学生纷纷抢答)分别为4x,vt,6a2、a3,-n,
师:很好!同学们,请观察以上所列代数式,思考它们的结构之间有什么共同特点?(学生之间交流,讨论,教师点拔,体现自主――合作――探究的教学方式培养小组合作学习能力。)
生5:我认为它们都有数。
生6:我认为都有字母。
生7:有乘法。
生8:还有乘方。
师:a3表示什么意义?
生9:a3表示a•a•a.
师:以上的每个式子都可看成数或字母间是怎样的运算关系?
生10:都是数或字母的乘积。
师:说得非常准确。我们把这样的式子叫做单项式。这就是我们这节课学习的内容:单项式。(写出课题。板书单项式:数或字母的乘积的式子叫做单项式。单独的一个数或一个字母,也叫单项式。)
师:例如,上面所列的式子都是单项式。比如:5,x也都是单项式,现在请同学们举出你认为是单项式的例子。
生11:3x2,-8.
…………
师:真棒!这些都是单项式。我们把单项式中的数字因数叫做这个单项式的系数。例如4x的系数是4,vt的系数是1.谁知道其余的单项式的系数是什么?
生3:6a2是二次单项式。
生4:a3是三次单项式。
…………
师:(出示投影片3)请看下列式子是不是单项式,如果不是,说明理由,如果是指出系数和次数。同学们可以互相交流。(及时反馈教学效果,提高学生知识应用水平。)
生1:2x3是单项式,系数是2,次数是3.
生3:m+n 不是单项式,因为这不是数与字母的乘积。
生8:?仔r2是单项式,系数是1,次数是3.
师:?仔表示是一个具体数还是任意数呢?
生2:具体的数。
师:那么?仔r2的系数、次数分别是什么?
生5:系数是?仔,次数是2.
师:很好!继续回答。
生10:a是单项式,系数是1,次数是1.
生4:×102ab2是单项式,系数是230.
师:(追问)次数是多少?
生:是3.
师:为什么?
生11:因为单项式的次数是所有字母的指数和,这个单项式字母a的指数是1,b的指数是2.所以这个单项式的次数是3.
师:对不对呀?
生:对!
师:好!请回答下一个问题。
生5:-5是单项式。系数是-5,次数是0.
师:对。接着来。
生12:0是单项式,系数是0,次数也是0.
师:谁知道对不对?这个可以看的是与字母的多少次方相乘呢?
生:(争论)一次,二次……
师:都可以。现在请同学回答下列问题。看谁做得又快又准。
(出示卡片:通过变式与引申培养学生发散思维的能力。学生互相交流。)
1.-3x2yn是五次单项,则n=.
3.系数是-2,只含有两个字母m、n的四次单项式可表示为______.
(学生争先恐后地回答。并由其点评后教师引导求异思维。)
师:同学们表现得都很出色,现在能谈谈你在这节课都学到了什么?还有什么困惑,有什么感受?
生7:我通过本节课的学习,知道了什么是单项式,什么是单项式的系数、次数。
生8:我还知道单项式的一个数或字母也是单项式,但单独的一个数,我总认为次数是1.
师:谁能帮助解释一下吗?
生1:单独的数没有字母,就可以看作是乘以字母的0次方。
师:那你有什么感受呢?
生6:我觉得数学和生活实践有关系。所以我要学好数学。
师:数学来源于生活实际,反过来又为生活实际服务。同学们表现得非常好!积极动脑思考。发挥了聪明的才智,望继续发扬。
作业:(学生可自编或在教科书中找。)
每人写出10个单项式。并写出系数和次数。
用字母表示数教学反思【第五篇】
关键词数学概念;知识结构;用字母表示数;开放;生长
中图分类号 文献标识码A 文章编号1005-6009(2015)21-0011-02
作者简介范艳华,江苏省无锡市锡山区教育局教研室(江苏无锡,214101),一级教师,无锡市数学学科带头人。
一、课前思考:着眼于整体知识结构,把握概念生长的脉络
“用字母表示数”是学生在代数领域学习的起点。我们应该着眼于这一概念专题的整体知识结构,让学生能对这一概念专题有一个贯通性的理解。
1.“用字母表示数”中的“数”的内涵理解。
在小学数学教学中,教师常常把用字母表示的“数”分为“特定的数”与“变化的数”,如扑克牌中的字母J、K、A等都表示特定的数,而例题中“摆一个三角形用3根小棒,摆a个三角形用3a根小棒”,这里的a就表示一个变化的数。这样的教学其实是粗糙的,在学生头脑中形成的认知也是模糊的。
首先,扑克牌中的字母属于生活数学,和代数中的字母有一定的区别。其次,如果只说用字母表示变化的数,只说明了其一,这里的“变”与“定”是辩证统一的,随着自变量的确定,应变量的值也就确定了。另一方面,自变量的“变”也是在一定取值范围内的变化,并不是广泛意义上的“变”。
在代数领域,用字母表示的“数”的内涵可以理解为在函数领域的“变量”、不等式领域里在一定范围内的未知量和方程领域里确定的未知量。
2.“用字母表示数”在中小衔接中的整体贯通。
学习了“用字母表示数”之后,就小学阶段而言,将会学习方程的意义以及方程的初步应用,初中阶段则会进一步学习方程、不等式、函数等相关知识,这些知识的学习都将以此概念为基础。
二、课中新探:切准合适的开放点,拓宽概念生长的视野
小学阶段对于“用字母表示数”这一概念教学的知识技能目标主要是:让学生理解并学会用字母表示数,能用含有字母的式子表示数量关系或计算公式;会用数代替字母求出含有字母的式子的值。
除此以外,在这一概念的教学中,还可以在一些适当的点上进行合理的开放,做到渗透、贯通而不越位,让学生的思维自然而然向更高层次生长。现以苏教版五上《用字母表示数》第二课时为例谈几点思考和尝试。
1.正反求值,开放理解“变量”与“定量”的关系。
对于代入求值,如果仅仅通过代入几个零散的数,学生对“变”与“定”的关系是没有深刻的理解的。因此,在教学中涉及代入求值时,可以以此作为一个开放点,让学生比较深刻地体会“变量”与“定量”的关系。
师:我们已经知道在3+2a这个式子中,a表示增加的三角形的个数,3+2a表示对应的共需小棒的根数,只要确定了a的值,也就知道3+2a的值了。反过来,如果知道了3+2a的值,也就知道a的值了,大家来试着填一填。
上述教学中,通过一组顺向思维的代入求值,让学生深刻地感受到:在3+2a这个式子中,只要a的值确定了,这个式子的值也就随之确定了;a的取值不同,这个式子的值也就不同,并且3+2a这个式子所反映的数量间的关系总是不变的。反过来,通过逆向思维,已知式子的值求这个字母的值,让学生进一步强烈地感受其中蕴含的自变量和应变量之间的一一对应关系。同时,在逆向求值的过程中,其实已经蕴含了方程的思想。
2.一式联想,开放理解数量关系结构。
教学这一概念时,教师往往会让学生根据所提供的数学信息用含有字母的式子表示相关的数量关系,而对于在不同的数学情境中一个含有字母的式子可以表示符合相同结构的一系列不同的数量关系很少涉及。在教学中,可以作如下尝试:
教师出示1200-3x,让学生根据已知信息将问题补充完整,并具体说说这个式子在题目中的含义。
(1)一冷水壶中有1200毫升果汁,已经倒满了3杯, ?
(2)甲、乙两地相距1200千米,一列火车从甲地开往乙地, ?
(3)商店运进1200千克西瓜, ?
…………
“1200-3x”在不同的情境中可以表示不同的含义,在同一情境中也可以表示不同的含义。但是在这些不同中始终蕴含着一个相同的本质:数量关系结构是相同的。在这一过程中,学生经历了“同不同同”的思维过程,从而贯通地理解了式子的数学本质。
3.提前渗透,开放理解取值范围。
对于含有字母的式子的取值范围,在小学阶段,只是让学生初步了解这里字母的取值是有一定范围的,对此,学生常常处于似懂非懂的状态。综观知识的生长脉络,这一知识实际上和不等式有着直接的联系。因此,与其讲得模糊不清,不如在适当的时候用适当的方法渗透,让学生早一点想通。
根据“一冷水壶中有1200毫升橙汁,已经倒满了3杯,每杯x毫升,还剩多少毫升?”讨论1200-3x的取值范围。
生1:可以是任意数。
生2:不对,总共只有1200毫升橙汁,如果取任意数的话有可能会超出1200毫升。
师:也就是说式子1200-3x的值在这里一定大于或者等于0,对吗?
生:对的。
师:那么这时候,x的范围应该是怎样的呢?讨论一下。
学生通过讨论得出:x小于或等于400(根据学生的情况也可以引入“≤”这个数学符号)。
原本一个教师想讲又不敢深涉的点,其实对于学生而言并没有那么深奥难懂,与其遮遮掩掩,不如将其点透。通过这样一个取值范围的讨论,实际上学生已经自然而然地接触到了更高的数学思想――不等式的思想。而且学生已经在进行分类讨论了,在这里,尽管学生还不知道这就是不等式中的字母取值讨论,但是他们已经到达了下一个知识的生长节点。
上一篇:《司马光》教学反思4篇
下一篇:月光曲教学反思【实用4篇】