初二数学教学反思【精编4篇】

网友 分享 时间:

【前言导读】此篇优秀教学范文“初二数学教学反思【精编4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

八年级上册数学教学反思【第一篇】

整个新课讲解分为实例引入—讨论分析—归纳概括—巩固概念等四个小环节来进行。其中的实例引入部分,分别用了弹簧拉力器、吃大锅饭以及我的手机话费等贴近学生生活的实例入手,让学生明白、理解数学来源于生活应用于生活。特别是弹簧拉力器的引入,即活跃了课堂气氛也增加了学生学习的趣味性,得到了听课老师的一致好评。整节课的量适当,表达流利,跟学生的互动性好,学生的参与更加生动地体现了问题的情景,促使每一位学生都积极的参与解决问题,从而培养了学生“乐学”、“爱学”的学习态度。

然而,作为新老师的第一次公开课,难免存在着不足之处。比如在实例引入之后,过快的建立了数学模型,没有留给学生足够的思考时间。对于概念的阐述,也没有用其他的文字等形式去补充过渡,让学生有突兀的。感觉,略显单调,沉闷。板书的书写也不是很完善,字体稍微潦草。虽然学生的基础不错,但整节课的课堂节奏过快,没有足够的时间留给学生去思考,联系。一部分学生还是没能跟的上我的思维,这方面以后一定要加强改进。

对于这节课所暴露的问题,我一定会认真去对待,多花时间在备课上,多听听其他老师的课,吸取他们的课堂经验,为自己以后成为一名优秀的教师而努力。

初二数学教学反思【第二篇】

《分式的基本性质》是分式一章的重点,这一章教学效果的好坏,将直接影响到整个分式的学习,课本是通过算术中分数的基本性质,用类比的方法给出分式的基本性质,学生接受起来并不感到困难,但是要使学生达到透彻地理解,却并不是一件容易的事。因此我在教学时采用师生共同体会关键字眼在分式概念表述中的重要性和指导练习习题的不可忽视性。

当使用分数的基本性质时,虽然也强调用以同乘(或除)m≠0的数,但在实际应用时,几乎没有用零去乘(或除)的可能,所以使用性质的这个根本性的限制条件常常被忽略了。而在代数中,m常是一个含有字母的代数式,就有m=0的可能性。所以每当我们应用这个性质时,都应首先考虑一下这个用以同乘(或除)的整式的值是否为零?随时注意在怎样的条件下应用这个性质的。我们在教学中应使学生养成使用分式基本性质的严谨的习惯。

通过教学,学生对分式的基本性质有了一个较好的理解,这就为下面讲分式的变形奠定了良好的基础。整堂课取得了良好的教学效果。不足之处在于对于分数的基本性质与分式的基本性质能进行类比的本质理解不够,作业中仍有部分学生没有考虑分子、分母同乘以或除以的字母是否为0。

八年级数学教学反思【第三篇】

二次根式是代数式的一部分,其运算是有关运算中不可或缺的环节,是后续教学中的基础之一。因此,学好本章内容具有重要意义。而在教学中发现,有很多学生(甚至教师)对这一部分内容相当含糊,特别是积的算术平方根、商的)○(算术平方根公式以及二次根式的乘除法公式的有机应用,更造成了理解上的混乱,运算上的失误。要解决这个问题,就必须明确二次根式的化简、运算目的。通过教学反思,我认为二次根式的教与学必须围绕“小”、“少”、“分母无根号”三步诀。

所谓“小”,是指被开方数化简到最简(即化简成不能再开平方的'整数)为止。为此,可以用二次根式的四个性质来实现这个目的:

①(xx)2=a;

②=|a|;

③=;

④=。

所谓“少”,是指结果中尽量少含根号。要达到这个要求,可以用二次根式的乘法、除法公式来解决:xx;。在教材中P7例1计算、P9例4等。

所谓“分母无根号”,是指分母中不含有根号。众所周知,开不尽方的数是无理数,要除以一个无限不循环的小数,是很困难的,所以要转化为有理数来解决。一般情况下,利用分式的基本性质,分子、分母同时乘以分母的有理化因式即可。

八年级数学教学反思【第四篇】

通过分数与分式的比较,培养学生良好的类比联想的'思维习惯和反思方法;通过分数与分式的类比,向学生渗透矛盾转化的辩证唯物主义观点,并培养学生严谨的科学态度。本节课对分式经过引入,掌握,熟练,提高的过程,既学习了知识,又获得了知识,又获得了思维能力的提高。但本节课的不足之处是,符号规律的讲解不充分,学生掌握的不够扎实,在合适的机会里需要强化练习。

21 1516866
");