九年级数学上册的全册教案(通用5篇)
【序言】由阿拉题库最美丽的网友为您整理分享的“九年级数学上册的全册教案(通用5篇)”教学资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!
数学九年级上册优秀教案【第一篇】
教学目标
1、认识扇形统计图的特点和作用;
2、能联系百分数的意义,对扇形统计图提供的信息进行简单的分析。
3、遇到不理解或不懂的地方,用下划线和?标记出来。便于交流时提出。
4、自己的建议、体会、方法可以在旁边作好批注。
教学重难点
1、认识扇形统计图的特点和作用;
2、能联系百分数的意义,对扇形统计图提供的信息进行简单的分析。
教学工具
课件
教学过程
一、快乐自学
你喜欢运动吗?调查本班同学喜欢的运动项目。根据下面的统计图:
六(1)班最喜欢的运动项目统计图
1、说一说:从这幅统计图中你能获取哪些信息?
2、我知道这是一幅( )统计图,它的特点是( )。
3、我最喜欢的运动项目是( ),它占全班人数的百分比是( )。要想清楚地知道百分比这样的信息,我们可以选用( )统计图。
4、一起来认识扇形统计图吧!自学教材第107页,注意拿笔勾画哦!。
(1)计算出各运动项目占全班人数的百分比。
(2)从扇形统计图中,你又能获取哪些信息?
(3)你还能提出什么问题?
二、合作探究。
讨论交流:扇形统计图是怎样来表示各个数据的?它有什么特点?
1、我发现扇形统计图中的( )代表单位“1”,表示( ),各个扇形面积表示( ),扇形的大小说明了( )。
2、扇形统计图的特点是( )。
3、生活中,你还从()见到过扇形统计图?
三、学习小结
我们已曾经学过的统计图有条形统计图,它的特点是();还有()统计图,它的特点是不但可以表示各部分数量的多少,而且还可以清楚地看出数量的增减变化情况。我们今天又学习了扇形统计图,它的特点是(),
四 、智勇大闯关,我是小擂主
1、第一关:小练兵。
完成练习二十五的第1、2题。
2、第二关
完成练习二十五的第4题。
五、学后反思
1、我的收获:
2、自我评价:我对我的课堂表现( ),因为(
)。
六、作业
1、完成教材P107的“做一做”。
2、练习二十五的第3题
课后习题
1、完成教材P107的“做一做”。
2、练习二十五的第3题。
最新九年级上册数学教案【第二篇】
一、基本情况:
本学期是初中学习的关键时期本学期我担任初三年级(29、30)两个班的数学教学工作,是新课程标准实验教材,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中的创新意识、引导学生进行思考问题方式都必须不同与以往的教学。因此,在完成教学任务的同时,必须尽可能性的创设情景,让学生经历探索、猜想、发现的过程。并结合教学内容和学生实际,把握好重点、难点。树立素质教育观念,以培养全面发展的`高素质人才为目标,面向全体学生,使学生在德、智、体、美、劳等诸方面都得到发展。为做好本学期的教育教学工作,特制定本计划。
二、指导思想:
初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。
三、教学内容:
本学期所教初三数学包括第一章证明(二),第二章一元二次方程,第三章证明(三),第四章视图与投影,第五章反比例函数,第六章频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数这两章是与数及数的运用有关的。频率与概率则是与统计有关。
四、教学目的:
在新课方面通过讲授《证明(二)》和《证明(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。
在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。
五、教学措施:
针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:
1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。
2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。
3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。
4、新课教学中涉及到旧知识时,对其作相应的复习回顾。
5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。
九年级上册数学的教案【第三篇】
二次函数及其图像
二次函数(quadraticfunction)是指未知数的次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:
一般式
y=ax+bx+c(a0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b2)/4a);
顶点式
y=a(x+m)2+k(a0,a、m、k为常数)或y=a(x-h)2+k(a0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;
交点式
y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线];
重要概念:a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)
y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。由此可引导出交点式的系数a=y1/(x1__x2)(y1为截距)
教学问题诊断分析【第四篇】
一元二次方程是学生学习的第四个方程知识,首先在初一学习了一元一次方程,接着扩展“元”得到二元一次、三元一次方程,完成了二元一次方程组的学习,初二分式的教学,使得对实际问题的刻画从整式推广到有理式,分式方程得以出现,到一元二次方程第一次实现 “次”的提升。学生必然存在着疑问,为什么有些背景列得的方程是二次的呢?教学中要直面学生的疑问,显化学生的疑问,启发学生自己解释疑问,才能避免“灌输”,体现知识存在的必要性,增强学好的信念。
培养建模思想,进一步提升数学符号语言的应用能力, 让学生自己概括出一元二次方程的概念,得出一般形式,对初三学生是必须的,也是适可的。
本课的教学重点应该放在形成一元二次方程概念的过程上,不能草草给出方程的概念就反复辨析练习,在概念的理解上要下功夫。
本课的教学难点是一元二次方程的概念。
九年级数学上册教案:二次根式【第五篇】
配方法的基本形式
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题。
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤。
重点
讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤。
难点
将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧。
一、复习引入
(学生活动)请同学们解下列方程:
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±p或mx+n=±p(p≥0)。
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?
二、探索新知
列出下面问题的方程并回答:
(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?
(2)能否直接用上面前三个方程的解法呢?
问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征。
(2)不能。
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2+6x-16=0移项→x2+6x=16
两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9
左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法。
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解。
例1 用配方法解下列关于x的方程:
(1)x2-8x+1=0 (2)x2-2x-12=0
分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上。
解:略。
三、巩固练习
教材第9页 练习1,2.(1)(2)。
四、课堂小结
本节课应掌握:
左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程。
五、作业布置
下一篇:八年级上册数学教案【参考4篇】