八年级数学上册教案精彩4篇

网友 分享 时间:

【序言】由阿拉题库最美丽的网友为您整理分享的“八年级数学上册教案精彩4篇”教学资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

人教版八年级数学上册教案【第一篇】

一、创设情景,明确目标

多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。

二、自主学习,指向目标

学习至此:请完成《学生用书》相应部分。

三、合作探究,达成目标

多边形的定义及有关概念

活动一:阅读教材P19。

展示点评:多边形是怎么组成的?常见的多边形有哪些?边数最少的多边形是几边形?什么是多边形的边、内角、外角?

小组讨论:结合具体图形说出多边形的边、内角、外角?

反思小结:多边形的定义及相关概念。

针对训练:见《学生用书》相应部分

多边形的对角线

活动二:(1)十边形的对角线有35条。

(2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。

展示点评:结合图形说明什么是多边形的对角线?三角形是否有对角线?从五边形的一个顶点出发可以引几条对角线?五边形有几条对角线?从n边形的一个顶点出发可以引几条对角线?n边形有多少条对角线?表达式中的(n—3)是什么意思?为什么要除以2?

反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。

小组讨论:如何灵活运用多边形对角线条数的规律解题?

针对训练:见《学生用书》相应部分

正多边形的有关概念

活动二:阅读教材P20。

展示点评:画图说明什么是凸多边形和凹多边形?正多边形要求的条件是什么?边数最少的正多边形是什么?

小组讨论:判断一个多边形是否是正多边形的条件?

反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。

针对训练:见《学生用书》相应部分

四、总结梳理,内化目标

本节学习的数学知识是:

1、多边形、多边形的外角,多边形的对角线。

2、凸凹多边形的概念。

五、达标检测,反思目标

1、下列叙述正确的`是(D)

A、每条边都相等的多边形是正多边形

B、如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凸多边形

C、每个角都相等的多边形叫正多边形

D、每条边、每个角都相等的多边形叫正多边形

2、小学学过的下列图形中不可能是正多边形的是(D)

A、三角形B。正方形C。四边形D。梯形

3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。

4、已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数。

人教版八年级上册数学教案【第二篇】

一、教学目标

1、认识中位数和众数,并会求出一组数据中的众数和中位数。

2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。

3、会利用中位数、众数分析数据信息做出决策。

二、重点、难点和难点的突破方法:

1、重点:认识中位数、众数这两种数据代表

2、难点:利用中位数、众数分析数据信息做出决策。

3、难点的突破方法:

首先应交待清楚中位数和众数意义和作用:

中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。

教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。

在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。

三、例习题的意图分析

1、教材P143的例4的意图

(1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。

(2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)

(3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。

(4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。

2、教材P145例5的意图

(1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。

(2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)

(3)、例5也反映了众数是数据代表的一种。

四、课堂引入

严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。

五、例习题的分析

教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。

教材P145例5,由表中第二行可以查到号鞋的频数,因此这组数据的'众数可以得到,所提的建议应围绕利于商家获得较大利润提出。

六、随堂练习

1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)

1800、510、250、250、210*一米范文 *、250、210、210、150、210、150、120、120、210、150

求这15个销售员该月销量的中位数和众数。

假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。

2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示:

1匹匹匹2匹

3月12台20台8台4台

4月16台30台14台8台

根据表格回答问题:

商店出售的各种规格空调中,众数是多少?

假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?

答案:1. (1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。

2、 (1)匹(2)通过观察可知匹的销售,所以要多进匹,由于资金有限就要少进2匹空调。

七、课后练习

1、数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是

2、一组数据23、27、20、18、X、12,它的中位数是21,则X的值是。

3、数据92、96、98、100、X的众数是96,则其中位数和平均数分别是( )

、96 、 、97 、97

4、如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )

、25 、24 、25 、25

5、随机抽取我市一年(按365天计)中的30天平均气温状况如下表:

温度(℃) -8 -1 7 15 21 24 30

天数3 5 5 7 6 2 2

请你根据上述数据回答问题:

(1)。该组数据的中位数是什么?

(2)。若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?

答案:1. 9;2. 22; ;; 5.(1)15. (2)约97天

八年级上册数学教案人教版【第三篇】

《因式分解》教案

教学目标:

1、理解运用平方差公式分解因式的方法。

2、掌握提公因式法和平方差公式分解因式的综合运用。

3、进一步培养学生综合、分析数学问题的能力。

教学重点:

运用平方差公式分解因式。

教学难点:

高次指数的转化,提公因式法,平方差公式的灵活运用。

教学案例:

我们数学组的观课议课主题:

1、关注学生的合作交流

2、如何使学困生能积极参与课堂交流。

在精心备课过程中,我设计了这样的自学提示:

1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?

2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?

①-x2+y2②-x2-y2③4-9x2

④(x+y)2-(x-y)2⑤a4-b4

3、试总结运用平方差公式因式分解的条件是什么?

4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?

5、试总结因式分解的步骤是什么?

师巡回指导,生自主探究后交流合作。

生交流热情很高,但把全部问题分析完已用了30分钟。

生展示自学成果。

生1:-x2+y2能用平方差公式分解,可分解为(y+x)(y-x)

生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)

师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。

生3:4-9x2也能用平方差公式分解,可分解为(2+9x)(2-9x)

生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。

生5:a4-b4可分解为(a2+b2)(a2-b2)

生6:不对,a2-b2还能继续分解为a+b)(a-b)

师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……

反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的'条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:

(1)我在备课时,过高估计了学生的能力,问题2中的③、④、⑤多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:

下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。

(2)教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。

我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。

确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……

人教版八年级数学上册的教学计划【第四篇】

一、指导思想

教育学生掌握基础知识与基本技能培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。

二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。,学生思维非常活跃,但后进面较大,有少数学生不上进,思维不紧跟老师。在学习能力上,学生课外主动获取知识的能力较差,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,部分学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

三、教学目标

1、知识与技能目标

学生通过探究实际问题,认识全等三角形、轴对称、实数、一次函数、整式乘除和因式分解,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。

2、过程与方法目标

掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的判定、轴对称性质进一步培养学生的识图能力;通过探究一次函数图象与性质之间的关系,初步建立数形结合的数学模式;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。

3、情感与态度目标

通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。

17 93834
");