七年级数学教案(优推23篇)
通过趣味活动和实际应用,培养学生的数学思维与解决问题能力,增强对数学知识的理解与兴趣。下面是勤劳的小编为大家分享的七年级数学教案范例,欢迎借鉴参考。
七年级数学教案 篇1
教学目标:
1、在解决问题的过程中,探索分数除以整数的计算方法,并能正确的进行计算。
2、在探索分数除以整数计算方法的过程中,体验算法的多样性,养成独立思考的习惯,促进个性化学习。
3、在解决现实问题的过程中,感受数学与生活的密切联系,体验学数学,用数学的乐趣。
教学过程:
一、创设情境,提出问题。
师:同学们,我们学校设立了许多课外兴趣小组,同学们在课余时间可以根据自己的兴趣爱好参加小组的活动。今天我们一起走进布艺兴趣小组,看看那里的同学给我们提出了哪些数学问题。
师:看大屏幕,从情境图中你找到了哪些数学信息?
生:布艺兴趣小组的同学要用9/10米的布给小猴做衣服。如果做背心,可以做3件;如果做裤子,可以做2条。
师:根据这些信息,你能提出什么数学问题?
生1:做一件背心需要花布多少米?
生2:做一条裤子需要花布多少米?
(教师根据学生的提问,有选择的进行板书)
二、自主探索,获取新知
1、独立思考、自主探究。
师:我们先看第一个问题 “做一件背心需要花布多少米?”怎样列算式?
生1:9/10÷3=
师:为什么用除法?
生1:把9/10平均分成3份,求1份是多少,所以用除法。
师:谁还能再说一遍?
生重复。
师:9/10÷3结果是多少呢?请在自己的练习本写一写、画一画,算一算。
生自主操作,师适时巡视指导,找出两位同学上台板演。
2、合作交流,解决问题。
师:将你的想法和同桌交流一下。
生交流。
师:我们来看几位同学的方法。
(投影展示,画线段图的方法)
师:我们先看第一位同学的方法,这是哪位同学的,你能来介绍一下吗?
生:(画线段图的方法)把9/10米平均分成3份,每份是3/10米。
师:我们再来看一位同学的,他用的是长方形布条,这是哪位同学的,介绍一下?
生:把9/10米平均分成3份,每份是3/10米。
师:不管是画线段图还是用长方形来表示,我们都可以得到每份是3/10米。
板书方法:画线段图。
师:我们再来看黑板上这两位同学的(学生板演),请这位同学来介绍一下你的做法。
生:9/10÷3=9÷3/10=3/10(米)
把9/10米平均分成3段,就是把9个1/10米平均分成3份,每份是(9÷3)个1/10米,即3/10米
师:谁能再重复一遍?生重复。
师:我们可以用平均分的思想直接进行计算。(板书:平均分的方法)
师:看这种方法9/10÷3=9/10×1/3=3/10(米),(学生板演内容)谁来介绍一下?
生:9/10米平均分成3段,每段是多少米?也就是求9/10米的1/3,可以用乘法计算,每段是9/10×1/3=3/10(米)。
生似懂非懂。
师:你们能明白吗?我们结合这条形图来看一下,(出示课件)。
师:把条形图平均分成3份,一份占多少?
生:1/3。
师:也就是求什么/
生:也就是求9/10米的1/3。
师:我们可以怎样计算?
生:9/10×1/3
师:看一下算式?有什么变化?
生1:前面是除法,后面是乘法。
生2:3和1/3互为倒数
师:也就是除法转化成了乘法。(板书:转化)
师:谁能再说一说这种方法?
师:9/10米平均分成3段,每段是多少米?也就是求9/10米的1/3,可以用乘法计算,每段是9/10×1/3=3/10(米)。
师:这就是第三种方法,利用乘法的意义进行计算。(板书:乘法的意义)
师:除了这几种方法,你还有哪些办法?
生:转化成小数来计算。
师:说一下
生:9/10米化成小数米,平均分成3份,每份就是÷3=(米)。
师板书:9/10÷3=÷3=(米)
师:同学们想出了这么多方法解决问题,它们的结果相同,说明大家的思路是正确的,哪种方法更好一些呢?
生1:我认为第三种方法比较好,因为算起来比较简便。
生2:我认为第三种方法比较好,因为第二种方法只适用于能出开的情况。
师:说得非常好,到底他说的对不对,等会我们来验证一下。
3、选择算法,解决问题。
师:同学们,看来大家都已经有自己喜欢的方法了,我们来看第二个问题“做一条裤子需要花布多少米?”用你喜欢的方法独立完成。
(让学生独立列式,教师巡回指导,了解学生情况,找一位同学进行板演)
9/10÷2=9/10×1/2=9/20(米)
师:我们来看这位同学的,你们都和这位同学一样吗?谁来说说这种方法?
生:把9/10米平均分成2段,求每份是多少米?也就是求9/10米的1/2,用乘法来计算。
师:谁能再说一遍
生重复。
师:看算式,我们把除法转化成了乘法来计算。看来大家都觉得这种方法比较简单。
4、归纳概括,推广应用。
(1)师:仔细观察、分析刚才所解决的两个问题,想一想:我们怎样计算分数除以整数?看这两个算式,前面是除法,后面是?
生:乘法
师:看圈起来的两个数字,有什么关系?
生1:倒数
生2:互为倒数
师:一定要说完整。现在谁能用一句话来总结一下怎样计算分数除以整数的计算方法?
生:分数除以整数等于分数乘这个整数的倒数。(师板书)
师:谁能再说一遍?
生重复,全班同学一块交流。
三、巩固练习,加深理解
1、自主练习1
先让学生独立填写,然后组织交流。
交流时让学生说说自己的算法,体会到此题分数的分子都能被除数整除,所以采用分子除以除数的方法相对简捷。
2、自主练习2
让学生运用分数除以整数的计算方法连一连。独立完成,组织交流。
首先让学生观察第一行算式与第二行算式的特点以及之间的关系,从而悟出此题的意图,学生就可以顺利地利用分数除以整数的计算方法得出应该连的相应算式。
3、自主练习5
独立完成,投影展示交流。(两种方法,直接去除或者转化成乘法计算)
此题把解决问题和计算知识的练习融为一体,实现解决问题能力的培养与基础知识和基本技能的学习同步发展的教学目标。
4、自主练习4
独立完成,板演交流
此题把解决问题和计算知识的练习融为一体,实现解决问题能力的培养与基础知识和基本技能的学习同步发展的教学目标。
四、课堂小结
师:这节课我们主要学习了什么知识?
生:分数除以整数(板书)
师:通过这节课的学习,你有什么收获?
生汇报。
初中七年级数学教案 篇2
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?
同学们动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
这正是我们本章要解决的问题。
三、巩固练习
1、教科书第3页练习1、2。
2、补充练习:检验下列各括号内的数是不是它前面方程的解。
(1)x-3(x+2)=6+x(x=3,x=-4)
(2)2y(y-1)=3(y=-1,y=2)
(3)5(x-1)(x-2)=0(x=0,x=1,x=2)
四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业。
最新七年级数学教案 篇3
教学目的:
(一)知识点目标:
1、了解正数和负数在实际生活中的应用。
2、深刻理解正数和负数是反映客观世界中具有相反意义的理。
3、进一步理解0的特殊意义。
(二)能力训练目标:
1、体会数学符号与对应的思想,用正、负数表示具有相反意义的量。
2、熟练地用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:能用正、负数表示具有相反意义的量。
教学难点:进一步理解负数、数0表示的量的意义。
教学方法:小组合作、师生互动。
教学过程:
创设问题情境,引入新课:分小组派代表,注意数学语言规范。
1、认真想一想,你能用学过的知识解决下列问题吗?
某零件的直径在图纸上注明是,单位是毫米,这样标注表示零件直径的标准尺寸是毫米,加工要求直径可以是毫米,最小可以是毫米。
2、下列说法中正确的( )
A、带有“一”的数是负数;B、0℃表示没有温度;
C、0既可以看作是正数,也可以看作是负数。
D、0既不是正数,也不是负数。
[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。
讲授新课:
例1.仔细找一找,找了具有相反意义的量:
甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。
例2(1)一个月内,小明的体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值;
(2)20__年下列国家的商品进出口总额比上年的变化情况是:
美国减少%,德国增长%,法国减少%,
英国减少%,意大利增长%,中国增长%。
写出这些国家20__年商品进出口总额的增长率。
例3.下列各数中,哪些是正数,哪些是负数?哪些是正整数,哪些是负整数?哪些是正分数(小数),哪些是负分数(小数)?
例4.小红从阿地出发向东走了3千米,记作+3千米,接着她又向西走3千米,那么小红距阿地多少千米?
复习巩固:练习:课本P6练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本P7习题的第3、6、7、8题。
活动与探究:
海边的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潜水艇在海平面下30米处,现以海边堤岸为基准,将其记为0米,那么附近建筑物及潜水艇的高度各应如何表示?
七年级数学教案 篇4
一、素质教育目标
(一)知识教学点
1.使学生理解近似数和有效数字的意义
2.给一个近似数,能说出它精确到哪一痊,它有几个有效数字
3.使学生了解近似数和有效数字是在实践中产生的.
(二)能力训练点
通过说出一个近似数的精确度和有效数字,培养学生把握关键字词,准确理解概念的能力.
(三)德育渗透点
通过近似数的学习,向学生渗透具体问题具体分析的辩证唯物主义思想
(四)美育渗透点
由于实际生活中有时要把结果搞得准确是办不到的或没有必要,所以近似数应运而生,近似数和准确数给人以美的享受.
二、学法引导
1.教学方法:从实际问题出发,启发引导,充分体现学生为主全,注重学生参与意识
2.学生学法,从身边找出应用近似数,准确数的例子→近似数概念→巩固练习
三、重点、难点、疑点及解决办法
1.重点:理解近似数的精确度和有效数字.
2.难点:正确把握一个近似数的精确度及它的有效数字的个数.
3.疑点:用科学记数法表示的近似数的精确度和有效数字的个数.
四、课时安排
1课时
五、教具学具准备
投影仪,自制胶片
六、师生互动活动设计
教者提出生活中应用准确数和近似数的例子,学生讨论回答,学生自己找出类似的例子,教者提出精确度和有效数字的概念,教者提出近似数的有关问题,学生讨论解决.
七、教学步骤
(一)提出问题,创设情境
师:有10千克苹果,平均分给3个人,应该怎样分?
生:平均每人千克
师:给你一架天平,你能准确地称出每人所得苹果的千克数吗?
生:不能
师:哪怎么分
生:取近似值
师:板书课题
【教法说明】通过提出实际问题,使学生认识到研究近似数是必须的,是自然的,从而提高学生近似数的积极性
(二)探索新知,讲授新课
师出示投影1
下列实际问题中出现的数,哪些是精确数,哪些是近似数.
(1)初一(1)有55名同学
(2)地球的半径约为6370千米
(3)中华人民共和国现在有31个省级行政单位
(4)小明的身高接近米
学生活动:回答上述问题后,自己找出生活中应用准确数和近似数的例子.
师:我们在解决实际问题时,有许多时候只能用近似数你知道为什么吗?
启发学生得出两方面原因:1.搞得完全准确有时是办不到的,2.往往也没有必要搞得完全准确.
以开始提出的问题为例,揭示近似数的有关概念
板书:
1.精确度
2.有效数字:一般地,一个近似数,四舍五入到哪一位,就说这个数精确到哪一位,这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫做这个数的有效数字.
例如:有二个有效数字
有三个有效数字
讨论:近似数有几个有效数字,呢?
【教法说明】通过讨论学生明确近似数的有效数字需注意的两点:一是从左边第一个不是零的数起;二是从左边第一个不是零的数起,到精确的位数止,所有的数字,教者在有效数字概念对应的文字底下画上波浪线,标上①、②
例1.(出示投影2)
下列由四舍五入吸到近似数,各精确到哪一位,各有哪几个有效数字?
(1)(2)。03086(3)万
学生口述解题过程,教者板书.
对于近似数万学生又能认为是精确到十分位,这时可组织学生讨论近似数与和近似数万中的两个4的数位有什么不同,从而得出正确的答案.
【教法说明】对于疑点问题,通过启发讨论,适时点拨,远比教者直接告诉正确答案,理解深刻得多.
巩固练习见课本122页练习2、3页
例2(出示投影3)
下列由四舍五入得来的近似数,各精确到哪一位,各有几个有效数字?
七年级数学教案 篇5
教学目的
让学生通过独立思考,积极探索,从而发现;初步体会数形结合思想的作用。
重点、难点
1、重点:通过分析图形问题中的数量关系,建立方程解决问题。
2、难点:找出“等量关系”列出方程。
教学过程
一、复习提问
1、列一元一次方程解应用题的步骤是什么?
2、长方形的周长公式、面积公式。
二、新授
问题3.用一根长60厘米的铁丝围成一个长方形。
(1)使长方形的宽是长的专,求这个长方形的长和宽。
(2)使长方形的宽比长少4厘米,求这个长方形的面积。
(3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗?
不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。
(3)当长方形的长为18厘米,宽为12厘米时
长方形的面积=18×12=216(平方厘米)
当长方形的长为17厘米,宽为13厘米时
长方形的面积=221(平方厘米)
∴(1)中的长方形面积比(2)中的长方形面积小。
问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积呢?并加以验证。
实际上,如果两个正数的和不变,当这两个数相等时,它们的积,通过以后的学习,我们就会知道其中的道理。
三、巩固练习
教科书第14页练习1、2。
第l题等量关系是:圆柱的体积=长方体的体积。
第2题等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。
四、小结
运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,要联系实际,积极探索,找出等量关系。
五、作业
教科书第16页,习题第1、2、3。
七年级数学教案 篇6
学生很容易解决,相互交流,自我评价,增强学生的主人翁意识。
3、电脑演示:
如下图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连。
由平面图形动成立体图形,由静态到动态,让学生感受到几何图形的奇妙无穷,更加激发他们的好奇心和探索欲望。
四、做一做(实践)
1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。
2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。
五、试一试(探索)
课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。
教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体
1、以正四面体为例,说出它的顶点数、棱数和面数。
2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。将结果记入书上的P128的表格。引导学生发现结论。
3、(延伸):若随意做一个多面体,看看是否还是那个结果。
学生在探索过程中,可能会遇到困难,师生可以共同参与,适当点拨,归纳出欧拉公式,并介绍欧拉这个人,进行科学探索精神教育,充分挖掘学生的潜能,让学生积极参与集体探讨,建立良好的相互了解的师生关系。
六、小结,布置课后作业:
1、用六根火柴:①最多可以拼出几个边长相等的三角形?②最多可以拼出如图所示的三角形几个?
2、针对我校电脑室对全体学生开放的优势,教师告诉学生网址,让学生从网上学习正多面体的制作。
让学生去动手操作,根据自身的能力,充分发挥创造性思维,培养学生的创新精神,使每个学生都能得到充分发展。
新人教版七年级下册数学教案 篇7
教学目标:
1、借助数轴了解相反数的概念,知道互为相反数的位置关系。
2、给一个数,能求出它的相反数。
教学重点:理解相反数的意义。
教学难点:理解和掌握双重符号简化的规律。
教与学互动设计:
(一)创设情境,导入新课
活动 请一个学生到讲台前面对大家,向前走5步,向后走5步。
交流 如果向前走为正,那向前走5步与向后走5步分别记作什么?
(二)合作交流,解读探究
1、观察下列数:6和-6,2 和-2 ,7和-7, 和- ,并把它们在数轴上标出。
想一想 (1)上述各对数有什么特点?
(2)表示这四对数的点在数轴上有什么特点?
(3)你能够写出具有上述特点的n组数吗?
观察 像这样只有符号不同的两个数叫相反数。
互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点。即:我们把a的相反数记为-a,并且规定0的相反数就是零。
总结 在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数。
2、在任意一个数前面添上“-”号,新的数就是原数的相反数。如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.
(三)应用迁移,巩固提高
【例1】填空
(1)-是 的相反数, 的相反数是-(+3),a的相反数是 ;a-b的相反数是 ,0的相反数是 。
(2)正数的相反数是 ,负数的相反数是 , 的相反数是它本身。
【例2】 下列判断不正确的有( )
①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点。
个 个 个 个
【例3】 化简下列各符号:
(1)-[-(-2)]; (2)+{-[-(+5)]};
(3)-{-{-…-(-6)}…}(共n个负号)。
【归纳】 化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负。
【例4】 数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,则点B和点C各对应什么数?
(四)总结反思,拓展升华
【归纳】 (1)相反数的概念及表示方法。
(2)相反数的代数意义和几何意义。
(3)符号的化简。
(五)课堂跟踪反馈
夯实基础
1、判断题
(1)-3是相反数。( )
(2)-7和7是相反数。( )
(3)-a的相反数是a,它们互为相反数。( )
(4)符号不同的两个数互为相反数。( )
2、分别写出下列各数的相反数,并把它们在数轴上表示出来。
1,-2,0,,-,3
3、若一个数的相反数不是正数,则这个数一定是( )
A.正数 B.正数或0
C.负数 D.负数或0
4、一个数比它的相反数小,这个数是( )
A.正数 B.负数
C.非负数 D.非正数
5、数轴上表示互为相反数的两个点之间的距离为4,则这两个数是 。
提升能力
6、若a与a-2互为相反数,则a的相反数是 。
7、已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“<”连接起来。
七年级数学教案 篇8
教学目标:
1、知识与技能:会解含分母的一元一次方程,掌握解一元一次方程的基本步骤和方法,能根据方程的特点灵活地选择解法。
2、过程与方法:经历一元一次方程一般解法的探究过程,理解等式基本性质在解方程中的作用,学会通过观察,结合方程的特点选择合理的思考方向进行新知识探索。
3、情感、态度与价值观:通过尝试从不同角度寻求解决问题的方法,体会解决问题策略的多样性;在解一元一次放的过程中,体验“化归”的思想。
教学重难点:
重点:解一元一次方程的基本步骤和方法。
难点:含有分母的一元一次方程的解题方法。
教学过程:
一、新课导入:
请同学们和老师一起解方程:
并回答:解一元一次方程的一般步骤和最终的目的是什么?
二、讲授新课
请给同学们介绍纸草书(P95)。
问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.试问这个
数是多少?
并引入让同学运用设未知数的方法,列出相应的方程。
并回答:这个方程和我们以前学习的方程有什么不同?
同学们和老师一起完成解上述方程,并引入去分母。
例1、
例2、
活动:同学们,解一元一次方程的步骤有哪些?要注意哪些?
看一看你会不会错:
(1)解方程:
(2)解方程:
典型例题:解方程:
想一想:去分母时要注意什么问题?
(1)方程两边每一项都要乘以各分母的最小公倍数
(2)去分母后如分子中含有两项,应将该分子添上括号
选一选:
练一练:当m为何值时,整式和的值相等?
议一议:如何解方程:
注意区别:
1、把分母中的小数化为整数是利用分数的基本性质,是对单一的一个分数的分子分母同乘或除以一个不为0的数,而不是对于整个方程的左右两边同乘或除以一个不为0的数。
2、而去分母则是根据等式性质2,对方程的左右两边同乘或除以一个不为0的数,而不是对于一个单一的分数。
课堂小结:
(1)怎样去分母?应在方程的左右两边都乘以各分母的最小公倍数。
有没有疑问:不是最小公倍数行不行?
(2)去分母的依据是什么?
等式性质2
(3)去分母的注意点是什么?
1、去分母时等式两边各项都要乘以最小公倍数,不可以漏乘。
2、如果分子是含有未知数的代数式,其分子为一个整体应加括号。
(4)解一元一次方程的一般步骤:
布置作业:P98,习题第3题
补充作业:解方程:
(1)
(2)
板书设计:
教学反思:
初中七年级数学教案 篇9
教学目的:
(一)知识点目标:
1.了解正数和负数在实际生活中的应用。
2.深刻理解正数和负数是反映客观世界中具有相反意义的理。
3.进一步理解0的特殊意义。
(二)能力训练目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量。
2.熟练地用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:
能用正、负数表示具有相反意义的量。
教学难点:
进一步理解负数、数0表示的量的意义。
教学方法:
小组合作、师生互动。
教学过程:
创设问题情境,引入新课:分小组派代表,注意数学语言规范。
1.认真想一想,你能用学过的知识解决下列问题吗?
某零件的直径在图纸上注明是,单位是毫米,这样标注表示零件直径的标准尺寸是毫米,加工要求直径可以是毫米,最小可以是毫米。
2.下列说法中正确的( )
A、带有“一”的数是负数;
B、0℃表示没有温度;
C、0既可以看作是正数,也可以看作是负数。
D、0既不是正数,也不是负数。
[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。
讲授新课:
例1.仔细找一找,找了具有相反意义的量:
甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。
例2(1)一个月内,小明的体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值;
(2)20xx年下列国家的。商品进出口总额比上年的变化情况是:
美国减少%,德国增长%,法国减少%,
英国减少%,意大利增长%,中国增长%。
写出这些国家20xx年商品进出口总额的增长率。
例3.下列各数中,哪些是正数,哪些是负数?哪些是正整数,哪些是负整数?哪些是正分数(小数),哪些是负分数(小数)?
例4.小红从阿地出发向东走了3千米,记作+3千米,接着她又向西走3千米,那么小红距阿地多少千米?
复习巩固:练习:课本P6练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本P7习题的第3、6、7、8题。
活动与探究:
海边的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潜水艇在海平面下30米处,现以海边堤岸为基准,将其记为0米,那么附近建筑物及潜水艇的高度各应如何表示?
七年级数学教学教案 篇10
教学目标
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;
2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的`能力;
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
教学难点
正确分析实际问题中的不等关系,列出不等式组。
知识重点
建立不等式组解实际问题的数学模型。
探究实际问题
出示教科书第145页例2(略)
问:(1)你是怎样理解“不能完成任务”的数量含义的?
(2)你是怎样理解“提前完成任务”的数量含义的?
(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?
师生一起讨论解决例2.
归纳小结
1、教科书146页“归纳”(略).
2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?
在讨论或议论的基础上老师揭示:步法一致(设、列、解、答);本质有区别。(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。
七年级数学教案 篇11
教学目标:
1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。
2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质
过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。
3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,
增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。
教学重点:
同底数幂乘法的运算性质,并能解决一些实际问题。
教学过程:
一、复习回顾
活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:
二、情境引入
活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。
三、讲授新课
1.利用乘方的意义,提问学生,引出法则:计算103×102.
解:103×102=(10×10×10)×(10×10)(幂的意义)
=10×10×10×10×10(乘法的结合律)=105.
2.引导学生建立幂的运算法则:
将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.
用字母m,n表示正整数,则有即am·an=am+n.
3.引导学生剖析法则
(1)等号左边是什么运算?(2)等号两边的底数有什么关系?
(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么
(5)当三个以上同底数幂相乘时,上述法则是否成立?
要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.
四、应用提高
活动内容:
1.完成课本“想一想”:a?a?a等于什么?
2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。
3.独立处理例2,从实际情境中学会处理问题的方法。
4.处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp
五、拓展延伸
活动内容:计算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73
(5)??6??63(6)??5??53???5?。(7)?a?b???a?b?7542
2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3
(11)-a·(-a)3(12)(-a)2·(-a)3·(-a)
六、课堂小结
活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。
七、布置作业
1.请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。
2.完成课本习题中所有习题。
七年级数学教案 篇12
一、素质教育目标
(一)知识教学点
1.理解有理数乘方的意义.
2.掌握有理数乘方的运算.
(二)能力训练点
1.培养学生观察、分析、比较、归纳、概括的能力.
2.渗透转化思想.
(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.
(四)美育渗透点
把记成,显示了乘方符号的简洁美.
二、学法引导
1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.
2.学生学法:探索的性质→练习巩固
三、重点、难点、疑点及解决办法
1.重点:运算.
2.难点:运算的符号法则.
3.疑点:①乘方和幂的区别.
②与的区别.
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片.
六、师生互动活动设计
教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.
七、教学步骤
(一)创设情境,导入 新课
师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?
生:可以记作,读作的四次方.
师:呢?
生:可以记作,读作的五次方.
师:(为正整数)呢?
生:可以记作,读作的次方.
师:很好!把个相乘,记作,既简单又明确.
【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.
师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.
生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.
非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).
【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.
(二)探索新知,讲授新课
1.求个相同因数的积的运算,叫做乘方.
乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.
注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.
巩固练习(出示投影1)
(1)在中,底数是__________,指数是___________,读作__________或读作___________;
(2)在中,-2是__________,4是__________,读作__________或读作__________;
(3)在中,底数是_________,指数是__________,读作__________;
(4)5,底数是___________,指数是_____________.
【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.
师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?
学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.
生:到目前为止,已经学习过五种运算,它们是:
运算:加、减、乘、除、乘方;
运算结果:和、差、积、商、幂;
教师对学生的回答给予评价并鼓励.
【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.
师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.
学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.
【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.
2.练习:(出示投影2)
计算:1.(1)2, (2), (3), (4).
2.(1),,,.
(2)-2,,.
3.(1)0, (2), (3), (4).
学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.
师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?
先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.
生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.
师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?
学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.
生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.
师:请同学思考一个问题,任何一个数的偶次幂是什么数?
生:任何一个数的偶次幂是非负数.
师:你能把上述结论用数学符号表示吗?
生:(1)当时,(为正整数);
(2)当
(3)当时,(为正整数);
(4)(为正整数);
(为正整数);
(为正整数,为有理数).
【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.
七年级数学教案 篇13
教学建议
一、知识结构
二、重点、难点分析
角的定义既是本节教学的重点,也是难点.本节知识建立在射线、线段等相关知识的基础上,同时也是进一步学习角的度量、比较、画法,以及深入研究平面几何图形的基础.
1.角的定义是由实际生活中具有角的形象的物体抽象出来的,理解角的定义一定要明确角的边为射线,角为平面内的点集.角也可认为是一条射线绕它的端点从一个位置旋转到另一个位置而形成的图形,这里的线动成角体现了运动变化的思想.
2.角的表示法,小学没有介绍,这里首先说明用三个字母记角.对此,要特别强调表示顶点的字母一定要写在中间,唯有在顶点处只有一个角的情况,才可只用顶点一个字母来记这个角,否则分不清这个字母究竟表示哪一个角.在讲往数字或希腊字母来记角时,可再让学生作些练习,说出所记的角怎样用三个字母来表示.
三、教法建议
1.本节教学可以在简单复习直线、射线、线段的基础上引入,将问题的研究方向转向这些最基本的几何图形与点结合以及互相结合能够组成什么图形.可以尝试让同学们摆火柴,重点应在具有角的形象的图形,然后可以在列举、观察、分析学习、生活、生产中同样具有角的形象的物体的基础上,让同学们尝试给出角的定义.
2.关于角的另一种定义,也可以通过实物演示的方式得出,冽如一手扯住线的一端,另一手拉住线的另一端旋转.重点应是对运动变化的观点的渗透.平角和周角也可以让学生给出,真正理解“平”与“直”的含义.
3.教学过程中可以给出一些判别给定图形是不是角的练习,帮助学生理解角的相关概念.同时将角的知识与学生的生活实践紧密的结合起来.可以充分发挥多媒体教学的优势,结合图片、动画、课件辅助教学.
教学设计示例
一、素质教育目标
(一)知识教学点
1.理解角、周角、平角及角的顶点、角的边等概念.
2.掌握角的表示方法.
(二)能力训练点
1.通过由学生观察实物图形抽象出角的定义,培养学生的抽象概括能力.通过学生独立阅读总结角的几种表示方法,培养学生的阅读理解能力.
2.通过角的两个定义的得出,培养学生多角度分析考虑问题的能力.
(三)德育渗透点
1.通过日常生活中具体的角的形象概括出角的定义,说明几何来源于生活,又反过来为生产、生活服务.鼓励学生努力学好文化知识,为社会做贡献.
2.通过旋转观点定义角,说明事物是不断变化和相互转化的,我们不能用一成不变的观点去看待某些事物.
(四)美育渗透点
通过学习角使学生体会几何图形的对称美和动态美,培养学生的审美意识,提高学生对几何的学习兴趣.
二、学法引导
1.教师教法:引导发现,尝试指导与阅读理解相结合.
2.学生学法:主动发现,自我理解与阅读法相结合.
三、重点·难点·疑点及解决办法
(一)重点
角的概念及角的表示方法.
(二)难点
周角、平角概念的理解.
(三)疑点
平角与直线、周角与射线的区别.
(四)解决办法
通过演示法使学生正确理解平角、周角的概念,适当加以解释,简明扼要,条理清楚即可,不必做过多的解释.
四、课时安排
1课时
五、教具学具准备
投影仪(电脑、实物投影)、三角板、圆规、自制胶片.
六、师生互动活动设计
1.教师创设情境,学生进入.
2.教师步步设问,提出问题,学生在回答问题、自己画图、观察图形的过程中掌握角的静态定义.
3.教师指导,学生阅读、归纳四种表示角的方法.
4.教师用电脑直观演示展示角的旋转定义.
5.反馈练习.
6.师生讨论总结.
7.测试.
七、教学步骤
(一)明确目标
使学生能正确认识角的两种定义及相关概念,掌握角的表示方法,正确理解平角、周角的概念,并能从图形上进行识别.
(二)整体感知
以现代化教学为手段,调动学生主动参与的积极性,使学生在动手过程中自觉地掌握知识点.
(三)教学过程
创设情境,引出课题
师:前几节我们具体研究了小学时初步认识的直线、射线、线段.另外,小学时我们还认识了另一种几何图形?角.你能说出几个日常生活中给我们角的形象的物体吗?(学生会很快说出周围的课桌、门窗、墙壁的角;圆规张开两脚;钟表的时针与分针间形成的角等等.)
【教法说明】为了更形象、更直观用实物投影显示一些实物图形.
让学生说出口常生活中给我们角的`形象的物体,充分发挥学生的想像力,培养其观察事物的习惯,同时,活跃课堂气氛,调动学生学习积极性.也培养了学生从具体实物图形中抽象出几何图形的能力.
师:的确如此,在我们日常生活中,角的形象可以说无处不在.因此,一些图案的设计;机械零件的制图等等,常常用到角的画法、角的度量、角的大小比较等知识.从这节课开始我们就具体地研究角.希望同学们认真学习,掌握真本领,将来为社会做贡献.
探究新知
1.角的静止观点定义的得出
提出问题:通过以上举例和小学时你对角的认识,你能画出几个不同形状的角吗?
学生活动:在练习本上,画出几个不同形状的角,找一个学生到黑板上画图.可能出现下列情况:
师:根据小学所学你能指出所画角的边和顶点吗?(学生结合自己理解和小学所学,会很快指出角的边和顶点.)
师:同学们请观察,角的两边是前面我们学过的什么图形?它们的位置关系如何?你能否根据自己的理解和刚才老师的提问,描述一下怎样的几何图形叫做角吗?
学生活动:学生讨论,然后找代表回答.
教师在学生回答的基础上,给予纠正和补充,最后给出角的正确定义.
[板书]角:有公共端点的两条射线组成的图形叫做角,这个公共端点叫角的顶点,这两条射线叫角的两边.
(出示投影1)
指出以上图形,角的顶点和角的边.
提出问题:角的大小与角两边的长短有关系吗?
学生讨论并演示:拿大小不同的两副三角板或学生的三角板与教师的三角板对比演示.让学生尽可能地发表自己的看法和观点.不要拘泥于课堂上的形式,充分调动学生回答问题的积极性.
教师对学生的回答给予肯定或否定后小结:角的两边既然是射线,则可以向一方无限延长,所以角的大小与所画角的两边长短无关,仅与角的两边张开的程度有关.
【教法说明】角的定义的得出,不是教师以枯燥的形式强加给学生,而是让学生自己在画图、观察图形的过程中,由教师引导提出问题,步步追问,自觉地去认识.在问题解决的过程中,在复习旧知识中,不知不觉学到了新知识?角.这样缩短了新旧知识间的距离,减轻了学生心理上的压力,使他们感到新知识并不难,在轻松愉快中学到了知识.同时也会感受到新旧知识之间的联系.对发展学生用普遍联系的观点看待事物有很好的作用.
2.角的表示方法
师:研究角,像直线、射线、线段一样,可以用字母表示.下面我们阅读课本第25负第三自然段,总结角的表示方法有几种,你能否准确地表示一个角并读出来.
学生活动:学生看书,可以相互讨论,然后归纳出角的几种表示方法.
【教法说明】角的四种表示方法,课本中用一自然段说明,语言通俗,很易理解,学生完全可以通过阅读,分出四个层次,四种表示角的方法.因此教师要大胆放手,培养学生阅读理解能力,归纳总结能力.
学生阅读后,多找几个学生回答.最后通过不断补充、完善,归纳整理得出角的四种表示方法,教师整理板书.
[板书]
图1图2图3
【教法说明】总结以上四种表示方法时,对前两种表示方法,应注意的问题要加以强调.第一种表示方法必须注意:顶点字母在中间.第二种表示方法只限于顶点只有一个角.这是以后学生书写过程中最易出错的地方.另外,让学生区分角的符号与小于号.这些应注意的问题最好由学生讨论,学生发现后归纳总结.
反馈练习:投影打出以下题目
指出图中有几个角,并用适当的方法表示它们.
3.用旋转的观点定义角
师:同学们看老师从另一个角度提出新问题.前面我们给角下过定义,是在静止的情况下,观察角是由怎样的两条射线组成.下面,我们从运动的观点观察一下角的形成.
图1
演示:教师由电脑显示一条射线,然后射线绕其端点旋转,到另一个位置停止则形成一个角,如图1所示.举例帮助学生理解:钟摆看成一条射线,从一个位置摆到另一个位置则形成一个角.
学生讨论并试述定义:学生叙述不会太严密,教师纠正、补充后板书.
【板书】角:角还可以看成是一条射线从一个位置旋转到另一个位置所形成的图形.
说明:射线旋转时,经过的部分是角的内部.让学生说明平面内除了角的内部外还有几部分,分别是什么?(角的边与角的外部)
【教法说明】角的旋转观点的定义是教学中的一个难点,学生不易理解.因此,结合电脑的显示,举出实例等手段加强教学的直观性.
4.平角、周角的概念
师:角可以看成是一射线绕其端点旋转所形成的图形.那么,旋转时有无特殊情况呢?
由电脑演示并说明:
射线绕点旋转,终止位置和起始位置成一条直线时,所成的角叫平角,如图2所示.同样可表示为,顶点,两边为射线和射线.继续旋转,回到起始位置时,所成的角叫做周角,如图3所示.周角的顶点为,两边重合成一条射线.
图2
师说明:(1)平角与直线、周角与射线是两个不同的概念,它们的图形表面上看一样,但本质上不同.如:直线上取点表示点在直线上的位置,而平角是由顶点和边组成的角这一几何图形.
(2)在这一书中,所说的角,除非特殊注明,都是指没有旋转到成为平角的角.
【教法说明】平角、周角概念学生不容易理解,所以要通过直观演示后教师加以解释,但也不要解释得过多.否则,学生会更糊涂,简明扼要,条理清楚即可.
反馈练习:投影显示
1.指出图中以为顶点的平角的两边
2.指出图中(包含平角在内)的角有几个,并分别读出它们
对以上练习发现问题及时纠正.
变式练习,培养能力
投影出示:
1.如图1:可以记作吗?为什么?
图1
2.如图2:、分别是、上的点
①与是同一个角吗?
②与是同一个角吗?
3.如图3:是什么角?顶点、边分别是什么?
图2图3
【教法说明】为活跃课堂气氛,以上练习可以抢答.
(四)总结、扩展
学生看书,回答本节学了哪些主要内容,同桌可以相互讨论.最后教师按学生的回答归纳出本节知识脉络.投影显示:
八、布置作业
预习下节内容.
九、板书设计
同七、(四)中的格式,在表示方法中加上图形.
七年级数学教案 篇14
教学目标1,掌握绝对值的概念,有理数大小比较法则.
2,学会绝对值的计算,会比较两个或多个有理数的大小.
3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学难点两个负数大小的比较
知识重点绝对值的概念
教学过程(师生活动)设计理念
设置情境
引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向
课堂练习例2,比较下列各数的大小(教科书第17页例)
比较大小的过程要紧扣法则进行,注意书写格式
练习:第18页练习
小结与作业
课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?
本课作业1,必做题:教产书第19页习题1,2,第4,5,6,10
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在
这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学
习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意
义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理
数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,
学生不易接受.
2,一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。
3,有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学
中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到
大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.
4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教
学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。
七年级数学教案 篇15
教学目标
1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;
2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)
3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
教学难点
深化对正负数概念的理解
知识重点
正确理解和表示向指定方向变化的量
教学过程(师生活动)
设计理念
知识回顾与深化
回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示。这就是说:数的范围扩大了(数有正数和负数之分)。那么,有没有一种既不是正数又不是负数的数呢?
问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论。(数0既不是正数又不是负数,是正数和负数的分界,是基准。这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)
例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数。那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数?
问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0耽不是正数,也不是负数”也应看作是负数定义的一部分。在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。所举的例子,要考虑学生的可接受性。“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明。这个问题只要初步认识即可,不必深究。
问题3:教科书第6页例题
说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。
归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页)。
类似的例子很多,如:水位上升-3m,实际表示什么意思呢?收人增加-10%,实际表示什么意思呢?等等。可视教学中的实际情况进行补充。
这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健。这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出。
巩固练习教科书第6页练习
阅读思考
教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流
小结与作业
课堂小结以问题的形式,要求学生思考交流:
1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?
2,怎样用正负数表示具有相反意义的量?(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数。)
本课作业1,必做题:教科书第7页习题第3,6,7,8题
3,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指
定方向变化的量。
2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分。在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助。由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所
3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解。
4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识。通过实际例子的学习激发学生学习数学的兴趣。
七年级数学教案 篇16
一、教学目标
1.理解一个数平方根和算术平方根的意义;
2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3.通过本节的训练,提高学生的逻辑思维能力;
4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合。
四、教学手段
多媒体
五、教学过程
(一)提问
1.已知一正方形面积为50平方米,那么它的边长应为多少?
2.已知一个数的平方等于1000,那么这个数是多少?
3.一只容积为立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的下面作一个小练习:填空
1.( )2=9; 2.( )2 =;
5.( )2=
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±是的平方根;
0的平方根是0;
±是的平方根。
由此我们看到3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
( )2=-4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1.一个正数有两个平方根,它们互为相反数。
有一个平方根,它是0本身。
3.负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到3与-3的平方是9,9的平方根是3和-3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“- ”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:1.用正确的符号表示下列各数的平方根:
①26②247③④3⑤
解:①26的平方根是xx
②247的平方根是xx
③的平方根是xx
④3的平方根是xx
⑤的平方根是xx
最新七年级数学教案 篇17
一、教学思想:
深入推进和贯彻《初中数学新课程标准》的精神,以学生发展为本,以改变学习方式为目的,以培养高素质的人才为目标,培养学生创新精神和实践能力为重点的素质教育,探索有效教学的新模式。义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题转化为数学问题并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
二、教学目标:
1、态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。
2、知识与技能:掌握初中数学教材、数学学科“基本要求”的知识点。
3、过程与方法:通过探索、学习,使学生逐步学会正确、合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。围绕初中数学教材、数学学科“基本要求”进行知识梳理,适时的进行分层教学,面向全体学生、培养全体学生、发展全体学生。
三、教学措施
1、认真学习钻研新课标,掌握教材,编写好“教案”。
2、认真备课,争取充分掌握学生动态。
3、认真上好每一堂课。
创设教学情境,激发学习兴趣,充分用足用好40分钟。爱因斯曾经说过:“兴趣是的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学内容语言生动。相尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。
4、落实每一堂课后辅助,查漏补缺。
全面关心学生,这是老师的神圣职责,在课后能对学进行针对性的辅导,解答学生在理解教材与具体解题中的困难,指导课外阅读因材施教,使优生尽可能“吃饱”,获得进一步提高;使差生也能及时扫除学习障碍,增强学习信心,尽可能“吃得了”。充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。
5、积极与其它老师沟通,加强教研教改,提高教学水平。
6、经常听取学生良好的合理化建议。
7、深化两极生的训导。
8、落实帮教措施。
总之通过做好教学工作的每一环节,尽的努力,想出各种有效的办法,以提高教学质量。
新人教版七年级数学上册全册教案 篇18
一。教学目标
(1) 使学生进一步理解并掌握判定两条直线平行的方法;
(2) 了解简单的逻辑推理过程。
二。教学重点与难点
重点:判定两条直线平行方法的应用;
难点:简单的逻辑推理过程。
三。教学过程
复习提问:
1、判定两条直线平行的方法有哪些?
2、如图(1)
(1) 如果∠1=∠4,根据_________________,可得AB∥CD;
(2) 如果∠1=∠2,根据_________________,可得AB∥CD;
(3) 如果∠1+∠3=1800,根据______________,可得AB∥CD 。
3、如图(2)
(1) 如果∠1=∠D,那么______∥________;
(2) 如果∠1=∠B,那么______∥________;
(3) 如果∠A+∠B=1800,那么______∥________;
(4) 如果∠A+∠D=1800,那么______∥________;
新课:
例1 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?
分析:垂直总与直角联系在一起,我们学过哪些判断两条直线平行的方法?
答:这两条直线平行。
如图所示
理由如下: ∵b⊥a,c⊥a
∴∠1=∠2=900(垂直定义)
∴b∥c(同位角相等,两直线平行)
思考:
这是小明同学自己制作的英语抄写纸的一部分,其中的横格线互相平行吗?你有多少种判别方法?
例2 如图所示,∠1=∠2,∠BAC=200,∠ACF=800.
(1) 求∠2的度数;
(2) FC与AD平行吗?为什么?
巩固练习
1、 教科书19页练习
2、 如图所示,如果∠1=470,∠2=1330,∠D=470,那么BC与DE平行吗?AB与CD平行吗?
3、 如图所示,已知∠D=∠A,∠B=∠FCB,试问ED与CF平行吗?
4、 如图,∠1=∠2,∠2=∠3,∠3+∠4=1800,找出图中互相平行的直线。
作业:教科书19页习题第7、8题
初中七年级数学教案 篇19
教学目标
1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;
2. 初步培养学生观察、分析和抽象思维的能力。
教学重点和难点
重点:列代数式。
难点:弄清楚语句中各数量的意义及相互关系。
课堂教学过程设计
一、从学生原有的认知结构提出问题
1?用代数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x-3)
(3)乙数比x的倒数小7;( -7)
(4)乙数比x大16%?((1+16%)x)
(应用引导的方法启发学生解答本题)
2?在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?
二、讲授新课
例1 用代数式表示乙数:
(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%?
分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?
解:设甲数为x,则乙数的代数式为
(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x?
例2 用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的 与乙数的 的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积?
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?
解:设甲数为a,乙数为b,则
(1)2(a+b); (2) a- b; (3)a2+b2;
(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?
(本题应由学生口答,教师板书完成)
此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?
例3 用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数?
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的。数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n; (2)5m+2?
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?
例4 设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的 ;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和?
分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?
解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)
例5 设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
解:(1)m(m+6)个; (2)( m)m个?
三、课堂练习
1?设甲数为x,乙数为y,用代数式表示:(投影)
(1)甲数的2倍,与乙数的 的和; (2)甲数的 与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?
2?用代数式表示:
(1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数?
3?用代数式表示:
(1)与a-1的和是25的数; (2)与2b+1的积是9的数;
(3)与2x2的差是x的数; (4)除以(y+3)的商是y的数?
〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕
四、师生共同小结
首先,请学生回答:
1?怎样列代数式?2?列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握?
五、作业
1?用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?
2?已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积。
学法探究
已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?
分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律。
当圆环为三个的时候,如图:
此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:
解:
=99a+b(cm)
初中七年级数学教案 篇20
教学目标
1、熟练掌握加减消元法;
2、能根据方程组的特点选择合适的方法解方程组,
3、通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性。
教学难点
教材中例4的数量关系较复杂,是本课的难点。
知识重点能根据方程组的特点选择合适的方法解方程组。
教学过程
(师生活动)设计理念
创设情境
1、复习提问
解二元一次方程组有哪几种方法?它们的实质是什么?
2、播放动画《西游记》场景,配数学诗。
悟空顺风探妖踪,千里只行四分钟。
归时四分行六百,风速多少才称雄?
请一名学生解释诗歌大意:孙悟空顺风去查妖精的行踪,仅用4分钟就飞跃千里。逆风返回时4分钟走了600里,问风速是多少?
学生思考,根据题中等量关系,列出方程。
设悟空行走速度为x里/分,风速为y里/分,则
你会解这个方程组吗?引例生动活波,激发学生的探究欲望,让学生在看、听、想的过程中愉悦地获得数学知识。
探究新知学生独立完成后。在班级里交流解法。
解法一:①+②,消去y,得8x=1600
∴x=200,代人①,得y=50
原方程组的解为
解法二:①-②,消去x。以下略。
解法三:整体代入。由①得:4x=1000-4y,代入②,消去x。
同理,也可消去y。
解法四:化简原方程组为,再利用加减消元,或代入消元均可。
反思:试着从各个角度比较“代入法”与“加减法”的共同点与不同点。(同学间相互交流)它们各适用于什么情况?
在学生回答的基础上,教师指出:当方程组中某一个未知数的系数绝对值是1或一个方程的常数项为零时,用代入法较方便;当两个方程中,同一个未知数的系数绝对值相等或成整倍数时,用加减法较方便。
解二元一次方程组不管采用哪种方法,都可以获得它的解,但根据题目形式的特点,选择不同的方法可以减少弯路,加快速度使解题过程简洁提高正确率。
实际应用教材第109页例4。
2台大收割机和5台小收割机工作2小时收割小麦
公顷,3台大收割机和2台小收割机工作5小时收割小麦8公顷,问:1台大收割机和1台小收割机1小时各收割小麦多少公顷?
分析:
问题1.列二元一次方程组解应用题的关键是什么?
(找出两个等量关系)
问题2.你能找出本题的等量关系吗?
2台大收割机2小时的工作量+5台小收割机2小时的工作量=
3台大收割机5小时的工作量+2台小收割机5小时的工作量=8
问题3.怎么表示2台大收割机2小时的工作量呢?
设1台大收割机1小时收割小麦x公顷,则
2台大收割机1小时收割小麦_公顷,
2台大收割机2小时收割小麦_公顷。
现在你能列出方程了吗?
解后反思:应用题中,如何化解较复杂数量关系?
练习2:教科书第111页练习第3题应用题体会方程是刻画现实世界的有效数学模型。
小结与作业
小结提高在学生畅所欲言话收获的基础上,通过老师进行补充的方式进行。
本节课学习了哪些内容?你有哪些收获?
布置作业
8、做题:教科书112页习题第5、7题。
9、选做题:教科书112页习题第8题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1、能根据教材编写思路,遵循学生的心理特点,创造性使用新教材中的问题情境(引入与111页练习3属同种数学模型),把教材中不动的问题情境转化为动的问题情境。
2、真正把课堂还给了学生,使学生真正地变为课堂学习的主人,老师只是学生学习的引导者和组织者。由于学生的个体差异,思维方式的不同,为了给学生创造个性化的学习空间,鼓励学生们用自己的方式去学习,把学习的主动权还给他们,让他们自己去探究不同的解题方法。通过例题分析、启发提问、集体讨论等形式,使学生能准确而迅速地确定解题方法从而突出了本课的重点、难点—选择适当方法求解二元一次方程组。
七年级数学教案 篇21
教学目标:
1、能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。
2、在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。
3、了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。
教学重点:
同底数幂乘法的运算性质,并能解决一些实际问题。
教学过程:
一、复习回顾
活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:
二、情境引入
活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的'数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。
三、讲授新课
1.利用乘方的意义,提问学生,引出法则:计算103×102.
解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10(乘法的结合律)=105.
2、引导学生建立幂的运算法则:
将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有即am·an=am+n.
3、引导学生剖析法则
(1)等号左边是什么运算?
(2)等号两边的底数有什么关系?
(3)等号两边的指数有什么关系?
(4)公式中的底数a可以表示什么
(5)当三个以上同底数幂相乘时,上述法则是否成立?
要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.
四、应用提高
活动内容:
1、完成课本“想一想”:a?a?a等于什么?
2、通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。
3、独立处理例2,从实际情境中学会处理问题的方法。
4、处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp
五、拓展延伸
活动内容:
计算:
(1)—a2·a6
(2)(—x)·(—x)3
(3)ym·ym+1
(4)?7?8?73
(5)?6?63
(6)?5?53?5?。
(7)?a?b?a?b?75422
(8)?b?a?a?b?
(9)x5·x6·x3
(10)—b3·b3
(11)—a·(—a)3
(12)(—a)2·(—a)3·(—a)
六、课堂小结
活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。
七、布置作业
1、请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。
2、完成课本习题中所有习题。
七年级数学教案 篇22
【学习目标】:
1、掌握正数和负数概念;
2、会区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念
【教学过程】:
一、知识链接:
1、小学里学过哪些数请写出来:
2、阅读课本P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:
3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
二、自主学习
1、正数与负数的产生
(1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子: 。
(2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动: 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示。
(3)阅读P2的内容
3、正数、负数的概念
1)大于0的数叫做 ,小于0的数叫做 。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:
1、 P3第1,2题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:?13,?2,,+3065,0,-239; 54
则正数有_____________________;负数有____________________。
4.下列结论中正确的是 ????????????????( )
A.0既是正数,又是负数
C.0是最大的负数
【要点归纳】:
正数、负数的概念:
(1)大于0的数叫做 ,小于0的数叫做 。
(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【拓展训练】:
1.零下15℃,表示为_________,比O℃低4℃的温度是_________。
2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,
其中最高处为_______地,最低处为_______地.
3.“甲比乙大-3岁”表示的意义是______________________。
4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。
【课后作业】P5第1、2题
七年级数学教案 篇23
《整式的加减》教案
一、三维目标。
(一)知识与技能。
能运用运算律探究去括号法则,并且利用去括号法则将整式化简。
(二)过程与方法。
经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。
(三)情感态度与价值观。
培养学生主动探究、合作交流的意识,严谨治学的学习态度。
二、教学重、难点与关键。
1、重点:去括号法则,准确应用法则将整式化简。
2、难点:括号前面是—号去括号时,括号内各项变号容易产生错误。
3、关键:准确理解去括号法则。
三、教具准备。
投影仪。
四、教学过程,课堂引入。
利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?
五、新授。
现在我们来看本章引言中的问题:
在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为()小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120()千米,因此,这段铁路全长为100t+120()千米①冻土地段与非冻土地段相差100t—120()千米②上面的式子①、②都带有括号,它们应如何化简?
利用分配律,可以去括号,合并同类项,得:
100t+120()=100t+120t+120(-)=220t-60
上一篇:初中回忆友情散文专业优推13篇