七年级数学教案 七年级数学教案【参考8篇】

网友 分享 时间:

【导言】此例“七年级数学教案 七年级数学教案【参考8篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

最新七年级数学教案【第一篇】

教学目的:

(一)知识点目标:

1.了解正数和负数在实际生活中的应用。

2.深刻理解正数和负数是反映客观世界中具有相反意义的理。

3.进一步理解0的特殊意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量。

2.熟练地用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:能用正、负数表示具有相反意义的量。

教学难点:进一步理解负数、数0表示的量的意义。

教学方法:小组合作、师生互动。

教学过程:

创设问题情境,引入新课:分小组派代表,注意数学语言规范。

1.认真想一想,你能用学过的知识解决下列问题吗?

某零件的直径在图纸上注明是,单位是毫米,这样标注表示零件直径的标准尺寸是毫米,加工要求直径可以是毫米,最小可以是毫米。

2.下列说法中正确的( )

A、带有“一”的数是负数;B、0℃表示没有温度;

C、0既可以看作是正数,也可以看作是负数。

D、0既不是正数,也不是负数。

[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。

讲授新课:

例1.仔细找一找,找了具有相反意义的量:

甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。

例2(1)一个月内,小明的体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值;

(2)20__年下列国家的商品进出口总额比上年的变化情况是:

美国减少%,德国增长%,法国减少%,

英国减少%,意大利增长%,中国增长%。

写出这些国家20__年商品进出口总额的增长率。

例3.下列各数中,哪些是正数,哪些是负数?哪些是正整数,哪些是负整数?哪些是正分数(小数),哪些是负分数(小数)?

例4.小红从阿地出发向东走了3千米,记作+3千米,接着她又向西走3千米,那么小红距阿地多少千米?

复习巩固:练习:课本P6练习

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本P7习题的第3、6、7、8题。

活动与探究:

海边的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潜水艇在海平面下30米处,现以海边堤岸为基准,将其记为0米,那么附近建筑物及潜水艇的高度各应如何表示?

七年级数学教案【第二篇】

一、教学目标

1、知识目标:掌握数轴三要素,会画数轴。

2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

3、情感目标:向学生渗透数形结合的思想。

二、教学重难点

教学重点:数轴的三要素和用数轴上的点表示有理数。

教学难点:有理数与数轴上点的对应关系。

三、教法

主要采用启发式教学,引导学生自主探索去观察、比较、交流。

四、教学过程

(一)创设情境激活思维

1。学生观看钟祥二中相关背景视频

意图:吸引学生注意力,激发学生自豪感。

2。联系实际,提出问题。

问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

师生活动:学生思考解决问题的方法,学生代表画图演示。

学生画图后提问:

1。马路用什么几何图形代表?(直线)

2。文中相关地点用什么代表?(直线上的点)

3。学校大门起什么作用?(基准点、参照物)

4。你是如何确定问题中各地点的位置的?(方向和距离)

设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

师生活动:

学生思考后回答解决方法,学生代表画图。

学生画图后提问:

1。0代表什么?

2。数的符号的实际意义是什么?

3。—75表示什么?100表示什么?

设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

问题3:生活中常见的温度计,你能描述一下它的结构吗?

设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

问题4:你能说说上述2个实例的共同点吗?

设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

(二)自主学习探究新知

学生活动:带着以下问题自学课本第8页:

1。什么样的直线叫数轴?它具备什么条件。

2。如何画数轴?

3。根据上述实例的经验,“原点”起什么作用?

4。你是怎么理解“选取适当的长度为单位长度”的?

师生活动:

学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。

至此,学生已会画数轴,师生共同归纳总结(板书)

①数轴的定义。

②数轴三要素。

练习:(媒体展示)

1。判断下列图形是否是数轴。

2。口答:数轴上各点表示的数。

3。在数轴上描出下列各点:1。5,—2,—2。5,2,2。5,0,—1。5。

(三)小组合作交流展示

问题:观察数轴上的点,你有什么发现?

数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示—2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和—a的点进行同样的讨论。

设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。

(四)归纳总结反思提高

师生共同回顾本节课所学主要内容,回答以下问题:

1。什么是数轴?

2。数轴的“三要素”各指什么?

3。数轴的画法。

设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

(五)目标检测设计

1。下列命题正确的是()

A。数轴上的点都表示整数。

B。数轴上表示4与—4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

C。数轴包括原点与正方向两个要素。

D。数轴上的点只能表示正数和零。

2。画数轴,在数轴上标出—5和+5之间的所有整数,列举到原点的距离小于3的所有整数。

3。画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。4。在数轴上点A表示—4,如果把原点O向负方向移动1。5个单位,那么在新数轴上点A表示的数是________。

五、板书

1。数轴的定义。

2。数轴的三要素(图)。

3。数轴的画法。

4。性质。

六、课后反思

附:活动单

活动一:画一画

钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?

活动二:读一读

带着以下问题阅读教科书P8页:

1。什么样的直线叫数轴?

定义:规定了_________、________、_________的直线叫数轴。

数轴的三要素:_________、_________、__________。

2。画数轴的步骤是什么?

3。“原点”起什么作用?__________

4。你是怎么理解“选取适当的长度为单位长度”的?

练习:

1。画一条数轴

2。在你画好的数轴上表示下列有理数:1。5,—2,—2。5,2,2。5,0,—1。5

活动三:议一议

小组讨论:观察你所画的数轴上的点,你有什么发现?

归纳:一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的距离是____个单位长度;表示数—a的点在原点的____边,与原点的距离是____个单位长度。

练习:

1。数轴上表示—3的点在原点的_______侧,距原点的距离是______;表示6的点在原点的______侧,距原点的距离是______;两点之间的距离为_______个单位长度。

2。距离原点距离为5个单位的点表示的数是________。

3。在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是________。

附:目标检测

1。下列命题正确的是()

A。数轴上的点都表示整数。

B。数轴上表示4与—4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

C。数轴包括原点与正方向两个要素。

D。数轴上的点只能表示正数和零。

2。画数轴,在数轴上标出—5和+5之间的所有整数。列举到原点的距离小于3的所有整数。

3。画数轴,观察数轴,在原点左边的点有_______个。

4。在数轴上点A表示—4,如果把原点O向负方向移动1。5个单位,那么在新数轴上点A表示的数是________。

七年级数学教案【第三篇】

教学内容

人教二年级下册教材第59~60页例1及第60页“做一做”。

内容简析

例1借助平均分物的操作活动,先进行恰好分完的操作活动,并用除法算式表示出来;再进行有剩余的操作活动,通过对比使学生体会其异同,帮助学生理解有剩余的情况,并用除法算式表示。通过与表内除法的对比,使学生理解余数及有余数的除法的含义。

教学目标

1、结合具体情境,经历认识余数的过程,理解有余数除法的意义。

2、通过主题图教学,让学生知道计算问题是从生活实际中产生,体会到生活中处处有数学。

3、培养学生的学习兴趣及初步的观察、概括能力。

教学重难点

理解余数及有余数除法的含义,能够准确求出余数。

教法与学法

1、本课时运用自主学习法,引导学生通过摆草莓的操作活动,使学生经历把物品平均分后有剩余的现象,抽象为有余数的除法的过程,理解有余数除法的含义。

2、本课时学生的学习主要是通过总结、归纳、抽象、概括等方法来学习。承前启后链

教学过程

一、情景创设,导入课题

故事描写法:周末小熊打算请2个好朋友到他家做客,加上小熊一共3人,他想请大家一起吃草莓。可是他打开冰箱一看,发现只有7个草莓,3人怎么分7个草莓呢?他很苦恼。聪明的小朋友们,你们知道他为什么苦恼吗?谁能来说一说?(不能把草莓平均分完)这就是我们今天要共同探究的内容——有余数的除法(板书)。品析:把教材中的情景进行了改编,增加了课堂的趣味,吸引了学生的注意力,为新知教学做了充分的准备。活动导入法:请同学们拿出10个小圆片。

①把10个圆片平均分成2份,每份有几个?

②把10个圆片平均分成3份,每份有几个?

(学生说法不一:有的说不能分,有的说分不出来)

这样的问题究竟应该怎样解决呢?这就是今天我们要学习的新内容,有余数的除法。(板书课题:有余数的除法)品析:活动导入,让学生动手操作,每个学生都参与其中并思考没有刚好分完怎么办?于是激发了学生强烈的求知欲望,随着老师的引导进入新知的学习中。

二、师生合作,探究新知

1、复习表内除法的意义。

平常我们分东西,有时候能正好平均分完,有时候不能正好分完,剩下的又不够再分。剩下不够再分的数就叫余数,这节课我们就一起来学习“有余数的除法”(出示课题)。

(1)课件出示6个草莓图:把下面这些草莓每2个摆一盘,摆一摆。

(2)学生交流获取信息。

(3)利用学具实际操作。

(4)用算式表示操作的过程。课件出示6个草莓摆放的结果图:

(5)小组内说说6÷2=3(盘),这个算式表示的意思。品析:沟通操作过程、算式、语言表达之间的转换,使学生明白它们的意思是一样的,只是表达的形式不同。2、理解有余数除法的含义。

(1)在动手操作中感受平均分时会出现有剩余的情况。

①课件出示7个草莓图:把下面这些草莓每2个摆一盘,摆一摆。

②学生利用学具操作。

③交流发现的问题:剩下一个草莓。

(2)在交流中确定表示平均分时有剩余的方法。

①学生用算式表示刚才摆的过程,教师巡视,选取典型案例。

②教师板书规范写法:

7÷2=3(盘)……1(个)

余数

③读作:7除以2等于3余1。写法:首先在等号的右面写商,然后点上6个小圆点再写上余数。

④交流算式表示的意思,7、3、2、1各表示什么?明确“1”是剩下的草莓数,我们把它叫余数。

(3)归纳总结,完善学生的认知结构。

①比较两次分草莓的相同点和不同点。②教师随学生的回答,用课件呈现下表。

分的物品几个一份分的结果算式表达

6个草莓每2个一盘分了3盘,正好分完6÷2=3(盘)

7个草莓每2个一盘分了3盘,还剩1个7÷2=3(盘)……1(个)

?品析:充分调动学生已有的经验,通过摆学具的直观方式让学生在与表内除法的对比中,理解余数及有余数除法的含义,给学生创设自主构建知识的空间。

三、反馈质疑,学有所得

在学习完例1的基础上,引领学生及时消化吸收,请学生同桌之间互相叙述余数和有余数除法的含义。然后教师提出质疑问题,引领学生在解决问题的过程中,学会系统整理。

质疑一:什么是余数?余数的单位名称是什么?

学生讨论后归纳:当平均分一些物品有剩余且不够再分的时候,剩余的数叫余数。余数的单位名称和被除数的单位名称相同。

质疑二:什么是有余数的除法?

学生讨论后总结:带有余数的除法就是有余数的除法。

四、课末小结,融会贯通

本节课中,你有什么收获?聪明的你能帮老师简单总结一下刚刚我们都学习了哪些内容吗?

“本节课中,我们明白了平均分后有剩余可以用有余数的除法算式表示。也知道余数的单位名称和被除数的单位名称一样。”

五、教海拾遗,反思提升

本节课,我使用故事导入,通过小熊分草莓招待客人,草莓有剩余的情况,唤醒学生的生活经验,

让他们初步感受到余数就在自己的身边,体会余数的意义。

打破原有教学模式,组织学生开展自主、合作、探究的学习活动。老师和学生是平等的对话关系,真正把主体地位还给学生。当出示问题时,先让学生自己独立尝试分一分,在小组内交流自己是怎样做的,怎样想的,这样给学生充分的思考空间,让每个学生都能在趣味中学习,享受到成功的喜悦。

七年级数学教案【第四篇】

教学设计思路

以小组讨论的形式在教师的指导下通过回顾与反思前三章所学内容,领悟新旧知识之间的内在联系,总结知识结构及主要知识点,侧重对重点知识内容、数学思想和方法、思维策略的总结与反思,再通过练习巩固这些知识点。

教学目标

知识与技能

对前三章所学知识作一次系统整理,系统地把握这三章的知识要点;

通过回顾与反思这三章所学内容,领悟新旧知识之间的内在联系;

通过练习,对所学知识的认识深化一步,以有利于掌握;

发展观察问题、分析问题、解决问题的能力;

提高对所学知识的概括整理能力;

进一步发展有条理地思考和表达的能力。

过程与方法

在老师的引导下逐张复习每张的知识要点,通过练习来巩固这些知识点。

情感态度价值观

进一步体会知识点之间的联系;

进一步感受数形结合的思想。

教学重点和难点

重点是这三章的重点内容;

难点是能灵活利用这三章的知识来解决问题。

教学方法

引导、小组讨论

课时安排

3课时

教具学具准备

多媒体

教学过程设计

通过每一章的知识结构及一些相关问题引导学生总结出每一章的知识点。

七年级数学教案【第五篇】

教学目的:

(一)知识点目标:

1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:

知道什么是正数和负数,理解数0表示的量的意义。

教学难点:

理解负数,数0表示的量的意义。

教学方法:

师生互动与教师讲解相结合。

教具准备:

地图册(中国地形图)。

教学过程:

引入新课:

1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?

内容:老师说出指令:

向前两步,向后两步;

向前一步,向后三步;

向前两步,向后一步;

向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:

1.自然数的产生、分数的产生。

2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、、等是正数(也可加上“十”)

-3、-2、-、-等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。

0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图)让学生观察地形图上的标注和记录支出、存入信息的本地X银行的存折,说出你知道的信息。

巩固提高:练习:课本P5练习

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本P7习题的第1、2、4、5题。

活动与探究:在一次数学测验中,X班的平均分为85分,把高于平均分的高出部分记为正数。

(1)美美得95分,应记为多少?

(2)多多被记作一12分,他实际得分是多少?

七年级数学教案【第六篇】

教学目标

1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

2. 初步培养学生观察、分析和抽象思维的能力。

教学重点和难点

重点:列代数式。

难点:弄清楚语句中各数量的意义及相互关系。

课堂教学过程设计

一、从学生原有的认知结构提出问题

1?用代数式表示乙数:(投影)

(1)乙数比x大5;(x+5)

(2)乙数比x的2倍小3;(2x-3)

(3)乙数比x的倒数小7;( -7)

(4)乙数比x大16%?((1+16%)x)

(应用引导的方法启发学生解答本题)

2?在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?

二、讲授新课

例1 用代数式表示乙数:

(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%?

分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?

解:设甲数为x,则乙数的代数式为

(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?

(本题应由学生口答,教师板书完成)

最后,教师需指出:第4小题的答案也可写成x+16%x?

例2 用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的 与乙数的 的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积?

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?

解:设甲数为a,乙数为b,则

(1)2(a+b); (2) a- b; (3)a2+b2;

(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?

(本题应由学生口答,教师板书完成)

此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?

例3 用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数?

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n; (2)5m+2?

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?

例4 设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的 ;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和?

分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?

解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)

例5 设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

解:(1)m(m+6)个; (2)( m)m个?

三、课堂练习

1?设甲数为x,乙数为y,用代数式表示:(投影)

(1)甲数的2倍,与乙数的 的和; (2)甲数的 与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?

2?用代数式表示:

(1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数?

3?用代数式表示:

(1)与a-1的和是25的数; (2)与2b+1的积是9的数;

(3)与2x2的差是x的数; (4)除以(y+3)的商是y的数?

〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕

四、师生共同小结

首先,请学生回答:

1?怎样列代数式?2?列代数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握?

五、作业

1?用代数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

2?已知一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积。

学法探究

已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?

分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律。

当圆环为三个的时候,如图:

此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

解:

=99a+b(cm)

七年级数学教案【第七篇】

一。知识与技能

能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。

二。过程与方法

借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。

三。情感态度与价值观

培养学生积极思考,合作交流的意识和能力。

教学重、难点与关键

1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

2.难点:正确理解负数的概念。

3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。

教具准备

投影仪。

教学过程

四、课堂引入

我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数。

在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少%.

五、讲授新课

(1)、像-3,-2,-%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。而3,2,+%在问题中分别表示零上3摄氏度,净胜2球,增长%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+,+ ,…就是3,2,、,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号。

(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。

(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。

(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。

用正负数表示具有相反意义的量

(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛地应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额。

(6)、 请学生解释课本中图,图中的正数和负数的含义。

(7)、 你能再举一些用正负数表示数量的实际例子吗?

(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。

六、巩固练习

课本第3页,练习1、2、3、4题。

七、课堂小结

为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数。如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数。

八、作业布置

1.课本第5页习题复习巩固第1、2、3题。

七年级数学教案【第八篇】

《整式的加减》教案

一、三维目标。

(一)知识与技能。

能运用运算律探究去括号法则,并且利用去括号法则将整式化简。

(二)过程与方法。

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

(三)情感态度与价值观。

培养学生主动探究、合作交流的意识,严谨治学的学习态度。

二、教学重、难点与关键。

1、重点:去括号法则,准确应用法则将整式化简。

2、难点:括号前面是—号去括号时,括号内各项变号容易产生错误。

3、关键:准确理解去括号法则。

三、教具准备。

投影仪。

四、教学过程,课堂引入。

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

五、新授。

现在我们来看本章引言中的问题:

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为()小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120()千米,因此,这段铁路全长为100t+120()千米①冻土地段与非冻土地段相差100t—120()千米②上面的式子①、②都带有括号,它们应如何化简?

利用分配律,可以去括号,合并同类项,得:

100t+120()=100t+120t+120(-)=220t-60

20 2572149
");