初一数学《正数和负数》教案【5篇】

网友 分享 时间:

【阅读指引】阿拉文库网友为您分享整理的“初一数学《正数和负数》教案【5篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

《正数和负数》教案【第一篇】

预习提示

1、在实际问题中,为便于记录、计算引入正、负数体会其引入情境;

2、理解正、负数表示一对具有相反意义的量,并会表示。

知识目标:

会用正、负数表示相反意义的量。

能力目标:

用正、负数表示实际生活中具有相反意义的量。

情感目标:

体会正、负数在实际生活中的意义。

学习重、难点:

用正、负数表示实际生活中具有相反意义的量

学习过程:

1、比比看谁快:

(1) 比0大的数叫___________,在___________前加上-号数叫负数;

(2) 把下列各数写入相应集合里:

-10, 6, ―7, 0, ―, ― , 10%,

正整数集合{ } 负整数集合{ }

正数集合 { } 分数集合 { }

负数集合 { }

2、想一想:

例1、(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出这个月他们的体重增长值;

初一上册数学《正数和负数》教案【第二篇】

知识与技能

1 了解正数与负数是实际生活的需要。

2 会判断一个数是正数还是负数。

3 会用正、负数表示具有相反意义的量。

过程与方法

通过正、负数学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力。

情感态度与价值观

1 通过教师、学生双边的教学活动,激发学生学习的兴趣,让学生体验到数学知识来源于生活并服务于生活。

2 通过正、负数的学习,渗透对立统一的辩证思想。

教材分析

教学重点

负数的引入

教学难点

会判断正数、负数,运用正、负数表示相反意义的量,理解0表示量的意义。

教 学 过 程

教师活动

学生活动

备注(教学目的、时间分配等)

1 新课导入

珠穆朗玛峰的海拔高度为8844米,吐鲁番盆地的海拔高度为-155米,它们是什么意思呢?

2 正、负数的概念导入

引入例题

答题比赛:规则甲乙两人每人必答五道题,答对一道记10分,答错一道扣10分,不答得0分。最后得分,高者胜出。

交流讨论:

计算甲乙最后得分。

通过活动,你是否有新的发现?

3分

5分

教师活动

学生活动

备注(教学目的、时间分配等)

甲:对,对,对,错,错

乙:错,对,错,错,不答。

3 正数:大于0的数叫做正数。

4 负数:在正数前面加上负号叫做负数。

5 零既不是正数,也不是负数。

例1  读出下列各数,并指出其中哪些是正数,负数。

-2,0、5,+7,0,—3、14,-1、6

例2   (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

(2)某年,下列国家的商品进出口总额比上年的变化情况的:

美国减少%,德国增长%

法国减少%,英国减少%

意大利增长%,中国增长%

例3  2010年5月1日至10月31日期间,在中国上海市成功举行以城市,让生活更美好为主题的第41届博览会,这是由中国举办的首届世界博览会。总收入620亿人民币表示为+620亿人民币,那么总投资{总支出}450亿人民币表示为---------亿

书后练习

课堂小结

作业P5  

学生举例正数、负数。

为了明确表达意义,在正数前面加上“+”(正)号。

10分

5分

6分

5分

8分

2分

1分

板    书

正数概念             例1            例3

负数概念             例2

初中数学《正数和负数》的教案设计【第三篇】

1.1 正数和负数

〔教学目标〕

1、了解负数的产生是生活、生产的需要;

2、掌握正、负数的概念和表示方法,理解数0表示的量的意义;

3、理解具有相反意义的量的含义;

4、熟练地运用正、负数描述现实世界具有相反意义的量;

5、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力。

〔重点难点〕正确理解正、负数的概念,数0表示的量的意义和具有相反意义的量是重点,正确理解负数、数0表示的量的意义是难点。用正、负数表示生活中具有相反意义的量是重点,正、负数概念的综合运用是难点。

〔教学过程〕

一、负数的引入

我们知道,数产生于人们实际生产和生活的需要。[投影1~3:图]人们由记数、排序,产生了数1,2,3??;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数。

在生活、生产、科研中经常遇到数的表示与数的运算的问题。

[投影]1.北京冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?

2.有三个队参加的足球比赛中,红队胜黄队(4︰1),黄队胜蓝队(1︰0),蓝队胜红队(1︰0),三个队的净胜球分别是2,-2,0,如何确定排名顺序?

年我国产量比上年增长%,油菜籽产量比上年增长-%,这里的增长-%代表什么意思?

上面三个问题中,哪些数的形式与以前学习的数有区别?

数-3、-2、-%与以前学习的数有区别。-3表示零下3摄氏度,-2是由2-4得到的,表示净输2个球,-%表示减少%,而3表示零上3摄氏度,2表示净赢2个球,%表示增长%。

像3、2、%这样大于零的数叫做正数;像-3、-2、-%这样在正数前面加上负号“-”的数叫做负数。根据需要,有时在正数前面也加上“+”(正)号,例如,+3、+2、+、+1/3,?就是3、2、、1/3,?。

这样,一个数由两部分组成,数前面的“+” “-”号叫做它的符号,后面的部分叫做这个数的绝对值。

请你指出数-,5,-2/3的符号和绝对值。

二、对数“0”的重新认识

大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么0是什么数呢? 数0既不是正数,也不是负数,它是正数和负数的分界。

我们知道,0表示没有,它仅仅表示没有吗?实际上它还可以表示一个确定的量。如今天气温是零度,是指一个确定的温度;海拔0表示海平面的平均高度。

0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量。

三、用正负数表示相反意义的量

把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的高度。例如:珠穆朗玛峰的海拔高度为8844米,吐鲁番盆地的海拔高度为-155米。又如记录账目时,通常用正数表示收入款额,负数表示支出款额。

请大家看课本第3面的图、。

你能解释上面图中正数和负数的含义吗?

图中的4600表示A地高于海平面4600米,-100表示B地低于海平面100米;图中的2300表示存入2300元,-1800表示支出1800元。

你能再举一些用正负数表示数量的实际例子吗?

通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量,等等。

四、巩固练习

五、实际问题

[投影]例(1)一个月内,小明体重增加2公斤,小华体重减少1公斤,小强体重无变化,写出他们这个月的体重增长值;

(2)20xx年下列国家的商品进出口总额比上年的变化情况是:

美国减少%,德国增长1.3%,

法国减少%,英国减少%,

意大利增长%,中国增长%。

写出这些国家20xx年进出口总额的增长率。

分析:首先我们来弄清楚增长-1是什么意思?增长-%是什么意思?

增长-1表示减少1;增长-%表示减少%。

解:(1)这个月小明体重增长2公斤,小华体重增长-1公斤,小强体重增长0公斤。

(2)六个国家20xx年商品进出口总额的增长率:

美国 -%,德国 1.3%,

法国 -%,英国 -%,

意大利 %,中国 %。

注意:在同一个问题中,分别用正数与负数表示的量具有相反的意义。[投影3]例2 “牛牛”饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL,511mL,489mL,473mL,527mL ,问抽查产品的容量是否合格?

分析:“+30”是什么意思?“-30”是什么意思?

解:“500±30(mL)”表示实际容量比500mL最多多30mL,最少少30mL,即在470~530之间。 抽查产品的容量都在470~530之间,所以都合格。

六、巩固练习

[投影]补充题:某药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃~ ℃范围内保存才合适。

七、课堂小结

1、到目前为止,我们学习的数有正数、负数和零;零不仅仅表示没有,它还表示确定的量。

2、正数和负数起源于表示两种相反意义的量。

3、正、负数在生产、生活和科研中有着广泛的应用。

《正数和负数教案》【第四篇】

单元教学内容

1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系。

引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念。

2、通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴。数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:

(1)数轴能反映出数形之间的对应关系。

(2)数轴能反映数的性质。

(3)数轴能解释数的某些概念,如相反数、绝对值、近似数。

(4)数轴可使有理数大小的比较形象化。

3、对于相反数的概念,从数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等来说明相反数的几何意义,同时补充零的相反数是零作为相反数意义的一部分。

4、正确理解绝对值的概念是难点。

根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:

(1)任何有理数都有唯一的绝对值。

(2)有理数的绝对值是一个非负数,即最小的绝对值是零。

(3)两个互为相反数的绝对值相等,即│a│=│-a│。

(4)任何有理数都不大于它的绝对值,即│a│a,│a│-a.

(5)若│a│=│b│,则a=b,或a=-b或a=b=0.

三维目标

1、知识与技能

(1)了解正数、负数的实际意义,会判断一个数是正数还是负数。

(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解。

(3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值。

(4)会利用数轴和绝对值比较有理数的大小。

2、过程与方法

经过探索有理数运算法则和运算律的过程,体会类比、转化、数形结合等数学方法。

3、情感态度与价值观

使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言。

重、难点与关键

1、重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值。

2、难点:准确理解负数、绝对值等概念。

3、关键:正确理解负数的意义和绝对值的意义。

课时划分

正数和负数 2课时

有理数 5课时

有理数的加减法 4课时

有理数的乘除法 5课时

有理数的乘方 4课时

第一章有理数(复习) 2课时

正数和负数

第一课时

三维目标

一。知识与技能

能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。

二。过程与方法

借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。

三。情感态度与价值观

培养学生积极思考,合作交流的意识和能力。

教学重、难点与关键

1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

2、难点:正确理解负数的概念。

3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。

教具准备

投影仪。

教学过程

四、课堂引入

我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。人们由记数、排序、产生数1,2,3,为了表示没有物体、空位引进了数0,测量和分配有时不能得到整数的结果,为此产生了分数和小数。

在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少%。

五、讲授新课

(1)、像-3,-2,-%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。而3,2,+%在问题中分别表示零上3摄氏度,净胜2球,增长%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+,+,就是3,2,,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。

(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。

(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。

(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。

用正负数表示具有相反意义的量

(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛地应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额。

(6)、 请学生解释课本中图,图中的正数和负数的含义。

(7)、 你能再举一些用正负数表示数量的实际例子吗?

(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。

六、巩固练习

课本第3页,练习1、2、3、4题。

七、课堂小结

为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除0外),在正数前放上-号,就是负数,但不能说:带正号的数是正数,带负号的数是负数,在一个数前面添上负号,它表示的是原数意义相反的数。如果原数是一个负数,那么前面放上-号后所表示的数反而是正数了,另外应注意0既不是正数,也不是负数。

八、作业布置

1、课本第5页习题复习巩固第1、2、3题。

九、板书设计

正数和负数

第二课时

1、像-3,-2,-%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。而3,2,+%在问题中分别表示零上3摄氏度,净胜2球,增长%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+,+,就是3,2,,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。

2、随堂练习。

3、小结。

4、课后作业。

十、课后反思

《正数和负数》教案【第五篇】

正数与负数

教学目标

了解负数产生的背景是从实际需要产生的;会判断一个数是正数还是负数;会用正负数表示生活中常用的具有相反意义的量;培养学生的数学应用意识。

内容简析

本节是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。本节的重点是通过熟悉的实例引入负数的概念,使学生明确数学知识来源于实践又服务于实践。能正确识别负数、用正负数表示具有相反意义的量是本节的难点。教学中要特别强调“0”的特殊身份,明确“0”既不是正数,也不是负数,它是正、负数的分界点。教学中应多结合实例加深对负数的认识。

流程设计

一、情景创设

1.引导学生回忆小学学过的数,并回答小学学过的最小的数是谁?是否存在比零小的数?在小学遇到0-2、3-5这类题会算吗?

2.你看过电视或听过广播中的天气预报吗?(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温25°c,10°c,零下10°c,零下30°c。

为书写方便,将测量气温写成25,10,-10,-30,再如中国地形图上的海拔标注数据,-155之类的数是什么意思?怎样用数学来区分高出警戒水位1米与低于警戒水位1米呢?

二、新知探索

1.教师由以上实例归纳出正数与负数的描述性概念。

像25,10,8848,大于0的数叫正数;像-10,-30,-155这样在正数前面加上“-”(负号)的数叫做负数;0既不是正数也不是负数。

给出板书:

正数——大于0的数

负数——正数前面加“-”号的数(小于0的数)

0——既不是正数,也不是负数

说明:①负数前面的“-”号的读法,“-5”应读作“负5”;

②正数前面有时也可加上“+”(正)号,如将“5”写成“+5”;

③“0”是第一个自然数,可看作正数与负数的分界点,“0”的内涵很丰富,它不仅仅表示没有,在实际意义中,“0”是用来表示基准的数。

小资料:世界各国对负数的认识和接受也有一个过程。如1484年法国数学家曾得到二次方程的一个负根,但他不承认它,说负数是荒谬的数。1545年卡尔丹承认方程中可以有负根,但认为它是“假数”。直到1831年还有数学家认为负数是“虚构”的,他还特意举了一个“特例”来说明他的观点:“父亲56岁,他儿子29岁,问什么时候父亲的岁数将是儿子的两倍?”,通过列方程解得x= -2,他认为这个结果是荒唐的,他不懂得x= -2正是说明两年前父亲的岁数将是儿子的两倍。

三、范例共做

例1:所有正数组成正数集合,所有负数组成负数集合。把下列各数中的正数和负数分别填在表示正数与负数集合的圈里:

-11,,+,0,-,-

正数集合负数集合

例2:自己任意写出六个正数与六个负数分别填入相应的大括号里:

正数集合{ }

负数集合{ }

注:由于正数和负数都有无数个,在表示正数和负数的集合中常加上省略号。

例3:规定向前走为正,两个学生一组做游戏,如

甲:向前走2步乙:2

甲:向后走3步乙:-3

甲:-4乙:向后走4步

甲:0乙:原地不动

注:通过设计类似的游戏活动使学生加深对负数的认识。

四、巩固练习

1.-10表示支出10元,那么+50表示

如果零上5度记作5°c,那么零下2度记作

如果上升10m记作10m,那么-3m表示;

太平洋中的马里亚纳海沟深达11034米,可记作海拔米(即低于海平面11034米)。

比海平面高50m的地方,它的高度记作海拨;

比海平面低30m的地方,它的高度记作海拨;

2.下面说法正确的是()

a.正数都带有“+”号

b.不带“+”号的数都是负数

c.小学数学中学过的数都可以看作是正数

d.0既不是正数也不是负数

3.数学测验班平均分80分,小华85分,高出平均分5分记作+5,小松78分,记作。

4.某物体向右运动为正,那么-2m表示,0表示。

5.一种零件的内径尺寸在图纸上是10±(单位mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸,最小不超过标准尺寸。

五、小结提高

1.正数和负数表示的是一对相反意义的量,哪种意义为正是可以任意规定的。如果把一种意义规定为正,则相反意义的量规定为负。常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负;

2.正数是比零大的数,正数前面加“-”号的数叫负数。所有负数小于零,零既不是正数也不是负数。

六、课后思考

1.-a一定是负数吗?

2.在月球表面,“白天”的温度可达127°c,太阳落下后的“月夜”气温竟下降到-183°c,请问在月球上温差是多少度?

221381