初中数学试讲教案最新5篇

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“初中数学试讲教案最新5篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

初中数学试讲教案:《认识负数》【第一篇】

教学内容:

苏教版国标本五年级上册《认识负数》第一课时

教学目标:

1、在具体情境中认识负数,感受负数的实际意义;会正确读写正、负数;初步感知正、负数可以表示两种相反的关系;知道负数都小于零,正数都大于零。

2、体验生活与数学的联系,会用正负数的知识解释生活现象。

教学过程:

一、创设情境,激趣引入

(多媒体出示沈阳大雪时的一幅照片)

师:这是沈阳大雪时的一幅照片。猜猜看,这时的气温可能是多少度?(指名口答)

(评:以温度引入负数,符合学生的认知特点。“猜温度”既能服务于本节课的教学重点,又有利于激发学生的学习热情。)

二、借助经验,自主探究

1、 认识温度计

师:在日常生活中,人们往往借助温度计来测量温度。(多媒体出示温度计图)你了解温度计吗?把你了解的情况和大家交流一下,好吗?

小结:温度计上有两种计量单位:一种是摄氏度,一种是华氏度。我国统一使用摄氏度。

师:[多媒体出示标有沈阳温度读数(零下20℃)的温度计]谁能读出图中沈阳的温度?说一说你是怎样看出来的?(指名口答)

师:(多媒体依次出示读数为零下22℃、零下18℃的温度计图)这时的温度又是多少呢?你能说说是怎样看出来的吗?

[评:认识温度计是本环节的教学要点,而正确地读出温度计所示的零下温度又是本节课的教学难点。通过零下20℃、零下22℃、零下18℃的对比练习,既突出教学要点,又能有效地突破教学难点。]

2、教学例1。

(1)教学正、负数读写法

谈话:同学们,咱们中国幅员辽阔,南方和北方在气温上有很大差异。当沈阳还是千里冰封的世界时,南京和海口的气温又是多少呢?咱们一起来看一下。(多媒体出示三幅温度计图:沈阳零下20℃;南京0℃;海口零上20℃)

师:从这几幅图中,你能看出南京和海口的气温吗?你能说说怎样看出来的吗?你还能得到哪些重要的数学信息?(小组讨论、指名汇报交流。)

师:沈阳和海口的气温一样吗?为什么?

你能用自己喜欢的方式表示这两个不同的温度吗?(学生记录后,展示、交流评价。)

师:数学语言需要交流,交流就要符号统一。(展示并板书-20℃、+20℃)这是科学家规定的记录方法。

讲解:“-”是负号,“+”是正号,要写得小一点。-20℃读作负二十摄氏度; +20℃读作正二十摄氏度。+20℃也可以简单记作20℃。

(2)练一练。

(多媒体出示标有吐鲁番盆地某一天最低气温和最高气温的温度计图:零下9℃、零上27℃)

师:你能用刚才的方法把它们记录下来吗?[指名反馈,教师揭示

(板书):-9℃、27℃]

[评:通过练一练,既可以使学生更为准确、熟练地掌握零上温度和零下温度的表示方法,又为引入例2起到过渡作用。]

3、教学例2。

(1)出示例2。

师:吐鲁番盆地的早晚温差非常大。人们常这样来形容:“早穿棉袄午穿纱、围着火炉吃西瓜”。这与它的地理特征有很大关系。(出示例2:珠穆朗玛峰比海平面高8844米;吐鲁番盆地比海平面低155米。)

(2)教师讲解“海拔”的含义。

(3)你能用以上的方法表示出这两个海拔高度吗?(学生独立完成后,指名口答。板书:8844米、-155米)

(4)练一练。

(多媒体出示:读一读下面的海拔高度,说一说分别是高于海平面还是低于海平面?

黑海海拔高度是-28米。

马里亚纳海沟最深处的海拔是-11034米。

(评:两道例题两个层次,例1通过让学生观察、讨论、交流等数学活动,初步感知负数,并掌握负数的表示方法;例2教师则完全放手,让学生根据例1中温度的表示方法,类推出海拔的表示方法。教学方法一详一略,一扶一放。)

三、抽象概括,沟通联系。

1、揭示概念。

师(指板书):这里有许多数量,如果把它们的单位名称去掉,就得到一个个的数。你能把这些数分分类吗?

师:像-20、-9、-155这样的数都是负数。你还能说出几个负数吗?能说得完吗?

像+20、27、8844这样的数都是正数。你还能说出几个正数吗?能说得完吗?

揭示课题(板书)。

2、介绍负数产生的历史。

(多媒体出示教科书第九页“你知道吗?”)

3、认识0与正、负数的关系。

师:你认为0是正数还是负数呢?理由是什么?(小组讨论、指名汇报结果)

0与负数比、0与正数比,大小有什么关系?(指名回答)

[评:揭示正负数时,让学生经历 “具体——抽象(由具体数量抽象出数)”的过程,符合儿童认知规律;让学生列举正、负数,可以初步感知正数的个数和负数的个数都是无限的。]

四、巩固练习,应用拓展。

1、选择合适的温度连一连。(多媒体出示教科书练习一第四题)

2、你知道这些温度吗?读一读。(教科书练习一第五题)

3、你能在温度计上表示出这些温度吗?(多媒体出示地图,闪烁温度:石家庄﹣5℃、长春﹣10℃、杭州5℃、桂林10℃)

(让学生在练习纸上完成后,比一比这几个城市温度的高低。)

4、下面是小明的一则日记。

2007年7月18日 晴

今天天气很热,大约有10℃。好多爱美的女士为了避暑都打上了遮阳伞。

我跟着爸爸来到他上班的冷食加工厂,一进加工车间,感到凉飕飕的,估计温度大概有-15℃。爸爸打开冷柜,马上有一股寒气袭来,我猜冰柜里的温度大约有8、9℃吧。

回来的路上,碰到了同学,我们就聊开了。洪军说:前几天,他们全家到泰山旅游,爬上了海拔﹣1545米的山顶;晓玲说:他们全家去了连云港,听说连云港海的最低处是海拔34米呢!

……

这则日记中有些数据不符合实际情况,你能找出来吗?你知道怎么改吗?

[评:以日记的形式展示数学内容,既贴近生活、新颖有趣,又有利于联系实际、培养数感。]

五、全课总结。

师:这节课我们一起认识了负数。你有哪些收获,给大家分享,好吗?

六、拓展延伸。

让学生课外注意观察身边的事物,搜集一些可以用负数表示的数量。

总评:

课程标准提出:人人学有价值的数学,人人都能获得必需的数学。本节课体现了如下特点:

简约。紧紧围绕教学目标来确定教学主线。让学生在具体情境中认识负数,感受负数的实际意义;在引导学生创造的基础上,教学正、负数的表示方法;让学生联系生活感知正数和负数意义相反、相互依存的关系;……使人感到简洁、明快。

贴切。数学知识源于生活经验。老师注意寻找贴近学生生活的数学素材,精心设计符合学生年龄特点的数学活动。使得学生乐学、深思,真正成为课堂的主人。

课始,老师让学生猜测沈阳大雪时的温度;接着自然地将温度计引出,并让学生自主交流温度计的有关知识;……既可以消除学生对教学内容的陌生感,同时也能激发学生的求知欲,使得学生积极参与数学活动。使人感到真切、自然。

充实。数学重在思考。认识负数时,借助温度计和海拔,引导学生通过看一看、猜一猜、说一说、议一议等数学活动,从不同的角度感受负数、理解负数,并用所学知识解决生活中的实际问题。从而让学生经历了“感知——探索——建构——应用”的认知过程,有利于增强认识,落实目标。使人感到实在、高效。

和谐。关注学生学习过程评价。老师注意给学生提供广阔的思维空间,鼓励学生尽情地表达自己的意见与想法。例如:“你了解温度计吗?把你了解的情况和大家交流一下,好吗?”、 “你能说说是怎样看出来的吗?”、“ 你能用自己喜欢的方式表示吗?”、“你有哪些收获,给大家分享,好吗?”……有利于学生自主参与知识的形成过程,从而形成平等、自由、和谐的学习氛围。使人感到轻松、流畅 。

初中数学试讲教案:《认识负数》【第二篇】

4月27日,我到新昌参加“沃洲之春”教学观摩活动,上虞阳光学校的叶柱老师上了一堂精彩的课〈认识负数〉,现将课堂实录整理如下:

一、温度中的“负数”

师:老师搜集了我国三个城市某天的最低气温资料,大家想看看吗?(课件)

杭州的最低温度是多少?

生:3摄氏度 生:39摄氏度

师:到底是多少?问题出在观察的方式上。(师介绍温度计两边的刻度摄氏度和华氏)

师:我们常用的是摄氏度。

师:我们来到了六朝古都南京最低气温是多少?生:0摄氏度

师:北京最低气温是多少?生:零下3摄氏度 。

师:你是怎么看的? 生:我发现它是在0以下,再数下3格就是零下3摄氏度。

师:北京与杭州的最低气温一样吗?为什么?

生:杭州气温是零上3摄氏度,北京是零下3摄氏度。

( 板书杭州 南京 北京的气温 )

师:你知道数学上是怎样区别零上3摄氏度与零下3摄氏度的吗?

(教学认读正3摄氏度 负3摄氏度 )

师:你能用这样的数表示其他城市的气温吗?请你用自己的神态与姿势告诉我已经准备好了

(课件展示某城市温度计 学生举学具卡片表示)

哈尔滨 -14摄氏度 漠河 -30摄氏度

海口 30 摄氏度

这时老师发现有两个同学的答案不同说:“可给我逮到了!”

师:+30摄氏度与30摄氏度哪个对?

生:这两个都对的。

师:把学具卡片放好,它只是我们的工具。

师:现在我们来做气象纪录员,看谁有快又准确。

(略)

二、海拔中的“负数”

师:不同地区气温有差别,同一地区一天中的气温也有差别,想了解吗?

(课件欣赏吐鲁番盆地的奇特自然现象)

师:吐鲁番气温变化是什么原因?是海拔。

(课件出示海拔高度示意图)

师:从图中你知道了什么?

生:珠穆朗玛峰海拔米, 吐鲁番盆地海拔低于海平面155米。

师:你能用今天所学的数表示出珠穆朗玛峰与吐鲁番盆地的海拔高度吗?

(同桌商量着互相说。)

师:你还有什么问题?

(师补充说明是最新的测量高度。)

(练习:用正负数表示各地的海拔高度。)

马耳代夫平均海拔比 海平面高1米

师:平均海拔比海平面高1米是什么意思?

师:海拔高于海平面10米有可能吗?

(练习:根据海拔高度判断各地高于海平面,还是低于海平面。)

欧洲是世界上海拔最低的洲,平均海拔高度300米。

马里亚那海沟 最深处海拔-11032米

师:你读了这句有什么感觉?

生:很高 。生:很深。

三、数学中的“负数”

师板书 +3摄氏度 -3摄氏度 -155米 米 40摄氏度 -26摄氏度

师:我们把它们的单位去掉,观察这些数你能给它们分分类吗?

生:分两类,有减号的与没减号的。

生:分3类,有减号的,有加号的,40是另一类。

师:你认为把它分在哪里合适?

师:像+3、40这样的数是“正数”;像-3、-400这样的数是“负数”。

( 出示一条数轴,在中间添上0)

师:如果这里是0,你能想到什么?

生:0的右边是负数,左边是正数。

生:0的左边是负数,0的右边是正数。

师:数学上规定0左侧的为负数,右侧的为正数。

( 生读数轴上的数)

师:读得完吗?红红的0该向哪边走呢?

师:0应该是分界线,0既不是正数也不是负数,所有的正数大于0所有的负数小于0。

师:我们回顾一下,学到了什么?

(揭示课题:认识负数 欣赏延伸《负数的历史》)

四、生活中的“负数”

师:生活中,你还在哪里见到过负数?

(工资单、电梯控制面板、)

(解决问题1、连一连 2、说一说 3、填一 填 4、想一想)

(课件出示有关刘翔比赛的资料:刘翔速度秒 赛场风速为-米)

师:你有疑问吗?

(师生表演来解释风速-米)

初中数学试讲教案:《认识负数》【第三篇】

课题是《认识负数》,它是人教版教材小学数学六年级下册第一单元的内容。《数学课程标准》将负数的认识安排在第二学段“数与代数”的知识体系中,具体目标是:在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题。从《课标》中可以发现,本课的学习,意在让学生感受负数与生活之间的联系,并没有复杂的概念与计算,知识层次比较浅。因此我认为,如何充分地展现负数的魅力,激起学生探索的兴趣,是教师在设计本课时值得关注的问题。

一、教材分析

在认真研读教材后,我改变了教科书原有的编排。教材是根据学生已有的生活经验,选用“气温”和“温度计”这两个熟悉的情境,让学生认识负数和理解负数。适时加入初一学习数轴初步知识,改变原有的编排,整合学习内容,“创造性的使用教材”,而不是“教教材”。为此,我制定出以下的教学 目标。

二、说教学目标

1、知识与技能方面:了解正数与负数是实际需要的,掌握会判断一个数是正数还是负数,会初步应用正负数来表示相反意义的量。

2、过程与方法方面:通过正数、负数的学习,培养学生应用数学知识解决实际问题的能力。

3、情感与态度方面:

①、从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活,应用于生活。

②、根据新课程标准新提出要注重培养学生基本的数学思想,我想通过正负数的教学,渗透对立、统一的辩证思想。

③、通过对负数有关知识的介绍,培养学生爱国主义情感。

三、说教学重点和难点。

本课的教学重点:理解运用正负数表示具有相反意义的量。

教学难点:理解0既不是正数也不是负数,并能对三者初步进行大小比较。

四、说教学环节以及设计意图

为了能很好地达到以上教学目标,我设计了四个教学环节,分别是:1、巧设情境、感知引入——引出负数;2、体验内化、探求新知——认识负数;3、回归生活,拓展应用——应用负数;4、课堂总结、知识延伸——拓展负数。下面,我就来具体阐述教学环节以及我的设计意图。

第一个环节:巧设情境、感知引入——引出负数

我们都知道:课堂应是点燃学生智慧的火把,而给予她火种的是一个个具有挑战性的问题。于是,我改变原有课本呈现三个城市的温度教学,一开始,让学生记录三条意义完全相反的信息:“老师说几件事,把你所听到的数据信息记录下来,独立思考,选择你喜欢的方法记录,关键是让别人一眼就能看明白。”这些数据信息是我精心准备的:比赛中进球丢球、学生的转进转出、生意的盈利亏损。创设这三个情境,其目的有两个:一、这些情境都是学生比较熟悉的,比教材中的温度学习更有兴趣。二、这些情境隐含了本节课的重点,用正负数来表示相反意义的量。我预设学生可能出现的答案,有的学生用文字,有的学生用箭头,当然也有学生就用正数、负数来表示。虽然他们的答案形式各样,但都有本质上的联系,我紧接又抛出一个评价性的问题:你们觉得谁的表示方法更简单易懂一些呢?于是动态生成里学习目标:认识负数,用正负数来表示意义相反的量。不惊让人觉得“负数”真是一场“及时雨”啊!这样的引入,学生自身产生“需要找到一种统一的形式”的内需,这时的学习,已经由被动化主动,同时,也让学生体验了由具体到抽象的符号化、数学化过程,认识也逐渐从模糊到清晰。这样的过程更让学生简约地经历了人类探索负数的历程,实现了数学学习的再创造。

引出负数后,我直接描述性的介绍,像什么样的数叫正数、像什么样的数叫负数。俗话说得好:不要认为学生是一张白纸,是一无所知,教师该放手时就放手,该出手时就出手。当学生知道它们的概念后,就能很快的判断一个数是正数还是负数。接着,我通过“快速抢答并判断”的游戏来刺激学生的思维,既能活跃课堂气氛,又能不知不觉中让学生熟练的掌握知识。还可以通过:“你能写出几个正数和负数”的练习,让学生体会正数和负数无限、对应等数学思想。现在新课标也注重要加强学生的基本数学思想。我想在此,这些数学思想已经无形地渗透其中。 介绍有关负数的小知识,让学生感受到我们的祖先是最早认识和使用负数的,这是多么的了不起啊!

第二个环节:体验内化、探求新知——认识负数

学习完了上一环节内容后,我让学生联系生活,想一想生活中的负数。顺利引入四个城市某日的天气预报,要求学生读出上述信息后,引导学生明白在生活中用温度计来测量温度,初步明确零上温度和零下温度的不同表示方法。在介绍完温度计的基本知识后,指名让学生动手拨出5℃和北京-5℃,也就是零下4℃。学生在没有0℃的温度计上,轻易的拨出了5℃,接着我又让她再-5℃,生在“水银”无法往下拨时,发现应该先确定0℃。加深他们对分界点0的认识。不要小看学生拨一拨这个环节,我们教材是直接呈现城市的温度,让学生自己读出来。而创造性地改变教材,其目的有两层意思:一、由静态化为动态,通过小小的“拨”,唤起了更深层次的思考:要在温度计上表示温度,首先要确定0℃的位置。使学生明确感悟到:温度中,0℃是区分零上温度和零下温度的分界点,比0℃高的温度用正数表示,比0℃低则用负数表示。其二、学生动手操作,兴趣盎然,既将正数、负数、零有机地整合到了一个新的概念框架中,实现了对0的再认识,又突出了本节课的教学重点、突破了0既不是正数也不是负数的难点。

在学生理性认识了零上温度和零下温度后,我再出示中国最冷的城市:黑龙江-40℃,用自己的表情和动作来表示越来越冷的感受。这不仅将负数大小的比较等知识很好地渗透进来,而且又能体现在生活中学数学的理念。

第三个环节:回归生活,拓展应用——应用负数。

既然负数是生活中发现的,那么我们就应该“取之于生活,用之于生活”。在练习环节,我为学生提供了大量的生活中的信息,运用数学知识解决生活中自己身边的问题,使练习变的既有趣又有用。我设计了三种练习:

1、基础性练习:山峰的海拔高度和盆地让学生再次感受“负数真的是无处不在”啊!多样化的练习,既不枯燥,又检查了学生对负数的理解。

2、形成性练习。比如上课时教师和学生可以演示方位中的负数。教师向北走几步,学生应该向南走几步等,这些不仅针对教学重点“用正负数表示意义相反的量”,而且又紧密联系生活,学生好学、乐学。

3、拓展性练习。我借助“刘翔”这个不仅是小学生会关注,大人会关注,乃至全世界人都会关注的人物跨栏成绩的研究,一下子把学生的积极性提到最高处。当时风速是每秒-米,为bb么说要说-米呢?给予学生讨论的空间,并用肢体语言表示出来。然后借助两位同学的表演,相对而跑,揭示出负数是表示相反意义的数。再让学生想想如果风速是每秒+米呢,又会出现什么情况呢?这些有价值性的问题,我想,学生愿意去思考,在思考中学数学,学在其中,乐在其中。

第四个环节:课堂总结、知识延伸——拓展负数。

引入数轴评价本课的收获:学生有前面温度计的辅垫,学习数轴也觉得轻松很多。

这个环节主要让学生总结本节课的知识,我相信,由于教师为学生搭建一个交流、开放、宽松的“舞台”,学生就能熟练轻松地总结知识。为了提高学生对负数的知识的兴趣,提高:你还想了解哪些与负数有关的知识?这样不仅能给课堂画上圆满的句号,还激发了学生继续探究的热情!

五、课后反思

通过本节课的学习,学生在知识性目标方面能够很好地落实,同时学生对所学过的数也能初步地形成知识系统,对负数的知识也能产生浓厚的学习兴趣。情感性目标也应能落实得比较到位。

现代教学论认为:学生只有在亲身经历或体验一种学习过程时,其聪明才智才能得以发挥出来。任何学习都是一种积极主动的建构过程。有这样一句话:听见了,忘记了;看见了,记住了;体验了,理解了。可见让学生感受数学、经历数学、体验数学是学生学习数学的最佳方式。

本节课的不足之处:老师在语言总结上,应该更为简洁;正数在日常生活中,正号省略不写,有个别学生还未掌握。

初中数学试讲教案【第四篇】

教学目标

1.了解公式的意义,使学生能用公式解决简单的实际问题;

2.初步培养学生观察、分析及概括的能力;

3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学过程

一、教学重点、难点

重点:通过具体例子了解公式、应用公式。

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的'辨证思想。

四、教法建议

1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

数学初中教案【第五篇】

教学目的:使学生掌握正方形的定义、性质和判定,会用正方形的概念和性质进行有关的论证和计算,理解正方形与平行四边形、矩形、菱形的内在联系和区别,进一步加深对“特殊与一般的认识”

教学重点:正方形的定义.

教学难点: 正方形与矩形、菱形间的关系.

教学方法:双边合作 如:在教学时可播放转换动画使学生获得生动、形象的可视思维过程,从而掌握判定一个四边形是正方形的方法.为了活跃学生的思维,可以得出下列问题让学生思考:

(1)对角线相等的菱形是正方形吗?为什么?

(2)对角线互相垂直的矩形是正方形吗?为什么?

(3)对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?

(4)能说“四条边都相等的四边形是正方形”吗?为什么?

(5)说“四个角相等的四边形是正方形”,对吗?

教学过程:

让学生将事先准备好的矩形纸片,按要求对折一下,裁出正方形纸片.

问:所得的图形是矩形吗?它与一般的矩形有什么不同?

所得的图形是菱形吗?它与一般的菱形有什么不同?

所得的图形在小学里学习时称它为什么图形?它有什么特点?

由此得出正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.

(一)新课

由正方形的定义可以得知:正方形是有一组邻边相等的矩形,又是有一个角是直角的菱形,因此正方形具有矩形的性质,同时又具有菱形的性质.

请同学们推断出正方形具有哪些性质?

性质1、(1)正方形的四个角都是直角。

(2)正方形的四条边相等。

性质2、(1)正方形的两条对角线相等。

(2)正方形的两条对角线互相垂直平分。

(3)正方形的每条对角线平分一组对角。

例1求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.

221381