七年级数学上册教案(通用5篇)

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“七年级数学上册教案(通用5篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

七年级数学上册教案【第一篇】

(1)常见的几何体;

(2)构成图形的基本元素——点、线、面及点、线与平面

图形的一些简单性质;点动成线,线动成面,面动成体

(3)棱柱的特征;并注意棱柱和圆柱的联系与区别

(4)长方体、正方体的表面沿某些棱展开的平面图形及圆

柱、圆锥的侧面展开图;

(5)用一个平面去截一个几何体,截面的形状;

(6)物体的三视图,立方体及其简单组合的三视图;

(7)生活中的平面图形。

一。填空:

1、这个几何体的名称是______;它有_____个面组成;它有____个顶点;经过每个顶点有____条边。

2、正方体或长方体是一个立体图形,它是由______个面,______条棱,_____个顶点组成的。

3、在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可)

4、一个棱柱有十个顶点,且所有侧棱的和为30cm,则每条侧棱长为cm.

5、将下面4个图用纸复制下来,然后沿所画线折起来,把折成的立体图形名称写在图的下边横线上:

6、如图是一些相同的正方块构成的立体图形的三视图,则构成这个立体图形的小方块数为。

7、如图所示,木工师傅把一个长为米的长方体木料锯成3段后,表面积比原来增加了

80,那么这根木料本来的体积是

8、要把一个长方体的表面剪开展成平面图形,至少需要剪开________条棱。

9、如图,截去正方体一角变成一个多面体,这个多面体有____个面,____条棱。

10、若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,_=____,y=____.

11、四棱柱按如图粗线剪开一些棱,展成平面图形,请画出平面图来:

12、薄薄的硬币在桌面上转动时,看上去象球,这说明了_____________.

13、右图中,三角形共有个。

14、如图是用边长为1的小正方体摆放成的一个几何体的三视图,这个几何体的表面积为。

第13题主视图俯视图左视图

二:选择题(每题4分,共24分)。

15、桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟。

Pqmn

①小狗先是站在地面上看,②然后抬起了前腿看,③唉,还是站到凳子上看吧,④最后,

它终于爬上了桌子………按小狗四次看礼物的顺序,四个画面的顺序为()

16、以下四个平面图形中,不是正方体的展开图的是()

ABCD

17、只有盖的盒子长、宽、高分别为5、5、3cm,如图所示,有一只蚂蚁从A点出

发,沿棱爬行,爬行的路径不许重复,则蚂蚁回到A点时,最多爬行()

18、一个几何体是由若干个相同的正方体组成的,其主视图和左视图

如图所示,则这个几何体最多可由多少个这样的正方体组成()

个个个个

19、把一个正方体截去一个角,剩下的几何体最多有几个面()

个面个面个面个面

20、从多边形一条边上的一点(不是顶点)发出发,连接各个顶点得

到20__个三角形,则这个多边形的边数为()。

________

21、下列四个图形折叠后与所得的正方体的各个面上所标数字一致的是()

22、如图(1)是正方体表面积展开图,如果将其折回原来的

正方体图(2)时,与点P重合的两点应该是()

和和Y

和和V

23、用一个平面去截①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是()

A.①②④ B.①②③ C.②③④ D.①③④

24、如图是正方体的表面展开图,折叠成正方体后,其中哪两个完全相同()

A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)

25、从多边形一个顶点处出发,连接各个顶点得到20__个三角形,

则这个多边形的边数为()

________

七年级上册数学教案【第二篇】

一、知识与技能

能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。

二、过程与方法

借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。

三、情感态度与价值观

培养学生积极思考,合作交流的意识和能力。

教学重、难点与关键

1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

2、难点:正确理解负数的概念。

3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。

教具准备

投影仪。

教学过程

四、课堂引入

我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数。

在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少%。

五、讲授新课

(1)、像-3,-2,-%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。而3,2,+%在问题中分别表示零上3摄氏度,净胜2球,增长%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+,+ ,…就是3,2,, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号。

(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。

(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。

(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。

用正负数表示具有相反意义的量

(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛地应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的。海拔高度。例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额。

(6)、 请学生解释课本中图,图中的正数和负数的含义。

(7)、 你能再举一些用正负数表示数量的实际例子吗?

(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。

六、巩固练习

课本第3页,练习1、2、3、4题。

七、课堂小结

为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数。如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数。

八、作业布置

1、课本第5页习题复习巩固第1、2、3题。

七年级数学上册教案【第三篇】

一、教学目标

(一)认知目标

1.借助频率或考虑实验观察到的结果,区分不可能发生、可能发生和必然发生这三个概念.

2.借助频数或频率,初步体会随机事件发生的可能性是有大有小的.

(二)情感目标

让学生在解决现实问题的同时,能受到爱国主义教育,增进对数学价值的认识.

二、教学重点

正确区分“不可能”、“必然”和“可能”.

三、教学难点

怎样分清不确定的现象和确定的现象.

四、教学过程

(一)导入新课

同学们还记得抛掷硬币的游戏吗?再抛10次试一试,记录一下,看看有________次正面朝上,有_______次反面朝上.

提问:在刚才的抛掷硬币游戏中,你发现正反面同时朝上有几次?

学生回答:0次;一次也没有;不可能.

回答得很好.在我们的周围有很多事情有可能发生,也有不可能发生的.下面再请同学们拿出准备好的骰子.

(二)新授

骰子都是正方体,它有六个面,每一面的点数分别是从1到6这六个数字中的一个.骰子的质地是均匀的,也就是说每个数字被掷得的机会都是一样的.

下面两人一组做掷骰子的游戏.

要求:一个同学掷骰子,另一个同学做记录,用“正”字法把每个点数出现的频数记录下来,填入备好的表里.掷完20次以后,两人交换角色,再记录下数据.

提问:“点数7”出现了多少次?

学生回答:0次.

从每个小组的频数表中,我们可以看到,不管如何,“点数7”出现的次数总是0.这并不是因为我们掷的时间还不够长或掷的次数还不够多,而是因为骰子上根本没有“7”.所以,无论再挪多少次,“点数7”都不会出现.我们可以说“掷得的点数是7”这件事是不可能发生的.

提问:在刚才的游戏中,还有什么事是不可能发生的?

学生进行简单讨论.

让学生自由发言:大干“点数7”的点数,像8、9都不可能发生.

那么,可能发生的事是什么呢?

七年级数学上册教案【第四篇】

一、教学目标

知识与技能

1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

过程与方法

通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

情感态度与价值观

初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

二、重点难点

重点

列单项式表示数量关系,单项式及其系数、次数的意义。

难点

列单项式表示数量关系。

三、学情分析

本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。

四、教学过程设计

问题设计师生活动设计意图

[活动1]

举世瞩目的青藏铁路于20xx年7月1日建成通车,实现了几代中国人梦寐以求的愿望。青藏铁路是世界上海拔最高、线路最长的高原铁路。青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答问题:

列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

提问:字母表示数有什么意义?

学生独立思考,尝试解决

解答:

1002=200千米

1003=300千米

100t=100t千米

我们用含字母t的式子100t表示路程。用字母表示数后,可以用含有字母的式子把数量关系简明地表达出来,更适合一般规律的表达。

从学生已有的数学经验和现实问题情境出发,感受用字母表示数的意义。

以青藏铁路为引例,对学生进行爱国主义教育的德育渗透。

教学过程【第五篇】

四、课堂引入

我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的、人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数、

在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少%、

17 3063268
");