高一年级必修四数学复习知识点精编5篇
【引言】阿拉题库漂亮网友为您分享整理的“高一年级必修四数学复习知识点精编5篇”范文资料,以供参考学习,希望这篇文档资料对您有所帮助,喜欢就下载分享给朋友吧!
高一数学必修四知识点梳理【第一篇】
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;
排除了为负数这种可能,即�
高一数学必修四知识点归纳【第二篇】
直角三角形的面积求法
直角三角形面积常用公式S=1/2ab(公式中a,b分别为直角三角形的两直角边长)。直角三角形是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。其符合勾股定理,具有一些特殊性质和判定方法。
三角形面积公式是指使用算式计算出三角形的面积,同一平面内,且不在同一直线的三条线段首尾顺次相接所组成的封闭图形叫做三角形,符号为△。它除了具有一般三角形的性质外,具有一些特殊的性质:
1、直角三角形两直角边的平方和等于斜边的平方。∠BAC=90°,则AB2+AC2=BC2(勾股定理)
2、在直角三角形中,两个锐角互余。若∠BAC=90°,则∠B+∠C=90°
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
5、Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
(1)(AD)2=BD·DC。
(2)(AB)2=BD·BC。
(3)(AC)2=CD·BC。
高一年级必修四数学复习知识点【第三篇】
集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:X
非负整数集(即自然数集)记作:N
正整数集:N*或N+
整数集:Z
有理数集:Q
实数集:R
高一年级数学必修四知识点复习【第四篇】
等比数列求和公式
(1)等比数列:a(n+1)/an=q(n∈n)。
(2)通项公式:an=a1×q^(n-1);推广式:an=am×q^(n-m);
(3)求和公式:sn=n×a1(q=1)sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q为公比,n为项数)
(4)性质:
①若m、n、p、q∈n,且m+n=p+q,则am×an=ap×aq;
②在等比数列中,依次每k项之和仍成等比数列。
③若m、n、q∈n,且m+n=2q,则am×an=aq^2
(5)"g是a、b的等比中项""g^2=ab(g≠0)".
(6)在等比数列中,首项a1与公比q都不为零。注意:上述公式中an表示等比数列的第n项。
等比数列求和公式推导:sn=a1+a2+a3+...+an(公比为q)q_sn=a1_q+a2_q+a3_q+...+an_q=a2+a3+a4+...+a(n+1)sn-q_sn=a1-a(n+1)(1-q)sn=a1-a1_q^nsn=(a1-a1_q^n)/(1-q)sn=(a1-an_q)/(1-q)sn=a1(1-q^n)/(1-q)sn=k_(1-q^n)~y=k_(1-a^x)。
高一年级数学必修四知识点复习【第五篇】
映射:
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”对于映射f:A→B来说,则应满足:
(1)集合A中的每一个元素,在集合B中都有象,并且象是的;
(2)集合A中不同的元素,在集合B中对应的象可以是同一个;
(3)不要求集合B中的每一个元素在集合A中都有原象。
上一篇:去英国留学生活指南【参考4篇】