高考数学知识点整理(最新5篇)
【引言】阿拉题库漂亮网友为您分享整理的“高考数学知识点整理(最新5篇)”范文资料,以供参考学习,希望这篇文档资料对您有所帮助,喜欢就下载分享给朋友吧!
高考数学知识点整理【第一篇】
其次,对其他的整个知识体系的版块有一个基本认识,可分为以下板块:函数的基本题型、函数与导数、三角函数相关内容、平面向量和空间向量、立体几何、数列、不等式、解析几何初步、圆锥曲线、统计与概率,选修内容不同省份安排不一样:极坐标、不等式、平面几何等。
知道了整个知识体系框架,就可以考虑在这一个学期里把哪些板块安排在哪一个月、哪一周,同时参考老师带领复习的进度,互为补充。每一周上课前,可以把老师上一周带动复习的内容再给自己计划一下,计划这一周在以前老师讲过的基础上再给自己添加哪些内容,无论是做新题,还是整理做过的题型来寻找考试方向,都要提前安排好,六天(可能高三时期周六都要拿出一些时间给学习吧)时间每天给自己规定额外的几个小时的自习时间来完成自己的数学计划。比如说,老师上周带我们复习了三角函数中与解三角形有关的内容,如果发现自己这些方面还有一些不会做的题或者不熟练的方法或者题型,就在资料上寻找相关的题目来试试,并且按时总结,找出这些题型的共同点,摸索高考命题方式。如果觉得自己在解三角形这些方面比较熟练了,就可以考虑赶在老师前面,把老师接下来要带着复习的方面先复习一遍。总之就是要使两个进度互为补充,这样才会一直有一个合理的顺序,不至于到了某一个星期就觉得乱了。最后的结果就是,别人是复习了一轮,而自己在同样的时间可以使自己的知识掌握更加牢固。
另一方面,给自己准备几个笔记本。对于理科生来说,尤其又是数学这种学科,在笔记本上整理总结题型是很有用的。一轮复习做到的一些错题可能是很有代表性的,自己要学会分章节把错题或者自己觉得经典的题目记录下来,这些可能就是高考的某一些思路。不过,这些经典的题目并不一定是那些怪题偏题,高考范围内的数学还是比较中规中矩的,除了压轴题会有一些特殊的思路或者灵感之外,大多数题目都是常规题型。
同时,说到做题,一轮复习是可以尝试开始做一些综合题或者高考题的。可选择本省前几年的题目来做,不必求数量,尝试一下高考题即可,建议周末的时候找两个小时的时间按照高考的感觉来做一套题。记住,不求做太多,只是看一看高考题的难度和综合性,给自己一个参考。
还有一个小小的建议,可以为自己准备一个小本子,用来写一些任务。因为高三每天都会有各种繁杂的学习任务,可能有时候自己一时会忙得忘了某个任务,直到第二天老师提起来的时候才想起,哇,我这个作业竟然没做。所以每次出现任务时就记录下来,完成之后就划去,既可 有时候在高三的时候会觉得自己有很多任务但是又不知道从什么开始,这是一种很常见但是必须要改变的现象,所以有一个小本子就会立刻知道自己要做什么,会有效利用高三的时间。
最后,在给学弟学妹带来一点感性一点的内容吧。高三是一场持久战,当你走过来了,才发现高三真的好快。同时,你会感激高三这一段奋斗的时光,十二年寒窗苦读这是第一次在学习上心无旁骛、花如此重大的精力冲刺一个目标,最后无论如何,不要让自己高考之后后悔。
高中数学公式大全汇总【第二篇】
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 a+b≤a+b a-b≤a+b a≤b<=>-b≤a≤b
a-b≥a-b -a≤a≤a
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1__X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c__h 斜棱柱侧面积 S=c'__h
正棱锥侧面积 S=1/2c__h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi__r2
圆柱侧面积 S=c__h=2pi__h 圆锥侧面积 S=1/2__c__l=pi__r__l
弧长公式 l=a__r a是圆心角的弧度数r >0 扇形面积公式 s=1/2__l__r
锥体体积公式 V=1/3__S__H 圆锥体体积公式 V=1/3__pi__r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s__h 圆柱体 V=pi__r2h
高考备考的知识方法【第三篇】
“不但要会埋头拉车,还要会抬头看路”是我对高考数学复习的一贯见解。高考是一场成王败寇的残酷竞争,它是公平的也是不公平的,说高考公平是因为所有人都将面对同样的时间、知识、试卷;说高考不公平是因为对每个人来说信息并不对称——对高考分析透彻的人自然拥有更高的复习效率必然会取得更出色的成绩。
这里我强调的并不是高中的基础知识掌握程度而是复习的效率问题,谁的基础知识更牢固谁将取得更好的高考成绩这是一个铁的事实,但它是建立在“所有人的复习效率都是相同的”这个假设之下的,所以大家经常可以看到有些高考考生学的呕心沥血却永远只是中游水平,而另一些高考生拥有大量的休闲活动却仍然能名列前茅。
造成这种现象的原因很多人会归结为“智商”和“运气”,我也不否认这两方面的因素,但最主要的原因还是效率问题:两个高考生同样学了一个小时的数学,一个人领悟了一个高考非常容易考到的重点内容,而另一个人啃下了一个非常难于理解的但是高考从来没有考过的难点内容,那么这样日积月累下来第一个人对高考真题考点的掌握就会远高于后者。这就是我说的“不但要会埋头拉车,还要会抬头看路”的意思,“拉车”就是指认真的复习,而“看路”则是指认清高考考察的重点,把握住高考复习的方向。“拉车”基本上是每个高三学生都能够作到的,但是“看路”就不尽然了,起早贪黑却劳而无功的高考生都是没有解决好复习方向的问题,没有看好“路”。
现在这个阶段是高三文科刚开始复习而理科将近结课的阶段,属于高考复习的初期,这一阶段给大家的建议是:
第一:先看一下近三、五年的高考真题,并不要去做这些高考真题,而是要从中分析出那些是真正的高考考点,
无法分清考点的轻重是最常见的问题,比如高考中《函数》与《导数》两部分的关系就是一个非常容易使人混乱的地方。《函数》是高一的重点章节,学校会反复强调它的重要性,说它在高考中占多少多少比例等等,而《导数》则只是高三中的一个辅助章节尤其是文科,它的章节比重很小,学校强调的也不够。这就给大家一个错觉就是函数比导数重要,但是事实上在真正的高考中它们两者的位置恰恰相反,函数的考查只有3至4道小题而且都位于试卷前几道题十分简单,其它问题虽然大量使用函数思想但是对同学们解题没有实质上的影响。反观导数它在高考中直接占有一道大题特别是07年的文科试题,它取代了《数列》的地 当然函数的单调、极值等可以用《函数》知识处理但比起导数来说这是十分烦琐的。
所以说导数的地位要远比函数来的重要,这一问题往往是影响大家高考复习效率的一个关键问题,发现它并不需要“智商”和“运气”,只要看一遍近几年高考真题即可,这就是我第一条建议的重点所在。
第二:分析自己的实力特征,果断对知识点进行取舍。高考是选拔性的考试,并不要求我们在某个单科中考出满分,只要高考总成绩能够胜出就可以,所以我们一定要根据自己的真实水平对整个高考复习作一个规划。07年天津市理科状元的数学成绩只有138分,并不是传奇的150,他其他的高考科目也都是很高但远没达到最高,这就说明了我们要合理分配自己的精力使自己的能力得以最大的发挥。这一点就是要告戒大家千万不能偏科,我们身边经常有一些高考考生他们某几门学科成绩十分优异(高于状元),但总成绩只能达到中游或中上的水平,他们最大的问题就是时间分配,如果他们节省出一部分花在强势学科上的时间转移到弱势学科上,他们必将取得更好的成绩。
第三:正确对待模拟考试与模拟题。如果已经看过高考真题的同学很容易发现高考真题与模拟题有着天壤之别,大多数模拟题尤其是出自低级别地方的,根本无法达到高考真题的水平,做它们是无法真实反映大家在高考中的表现的。所以大家在现阶段应该首先看“题”是否值得作再看作的是否好,这才是正确的方法。
高考数学常考知识点【第四篇】
高中数学重点知识点讲解:直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
高中数学重点知识点讲解:直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。在高中数学里直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。
②过两点的直线的斜率公式:
注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后高中数学涉及到求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
高中数学重点知识点讲解:直线方程
①点斜式:
直线斜率k,且过点
注意:高中数学在关于直线方程解法中,当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示。但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:()直线两点,
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
⑤一般式:(A,B不全为0)
⑤一般式:(A,B不全为0)
注意:○1各式的适用范围
○2特殊的方程如:平行于x轴的直线:
(b为常数);平行于y轴的直线:
(a为常数);
2021成人高考数学学习方法【第五篇】
养成良好的学习数学习惯
多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识� 良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法
中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。