高一数学必修三知识点笔记归纳【汇集10篇】

网友 分享 时间:

高一数学必修三涵盖函数与导数、三角函数、概率与统计等知识,强调理解与应用,培养逻辑思维能力,如何有效掌握这些内容呢?以下是阿拉题库的小编为大家分享的高一数学必修三知识点笔记归纳【汇集10篇】文章,欢迎您借鉴参考。

高一年级必修三数学知识点归纳 【第一篇】

算法

1、算法概念:

在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。现在,算法通常可以编成计算机程序,让计算机执行并解决问题。

2、算法的特征

①有限性:算法中的步骤序列是有限的,必须在有限操作之后停止,不能是无限的。

②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可。

③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后续步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。

④不性:求解某一个问题的解法不一定是的,对于一个问题可以有不同的算法。

⑤普通性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算其计算都要经过有限、事先设计好的步骤加以解决。

高一年级必修三数学知识点 【第二篇】

二项式定理

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m,二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

高一数学必修三重点知识点 【第三篇】

不等式性质比较大小方法:

(1)作差比较法

(2)作商比较法

不等式的基本性质

①对称性:a>bb>a

②传递性:a>b,b>ca>c

③可加性:a>ba+c>b+c

④可积性:a>b,c>0ac>bc

⑤加法法则:a>b,c>da+c>b+d

⑥乘法法则:a>b>0,c>d>0ac>bd

⑦乘方法则:a>b>0,an>bn(n∈N)

⑧开方法则:a>b>0

高一数学上册必修三重要知识点 【第四篇】

直线方程的五种形式

1:点斜式:已知直线过点(x0,y0),斜率为k,则直线方程为y-y0=k(x-x0)。

2:斜截式:已知直线在y轴上的截距为b,斜率为k,则直线方程为y=kx+b

3:两点式:已知一条直线经过P1(x1,y1),P2(x2,y2)两点,则直线方程为x-x1/x2-x1=y-y1/y2-y1,但不包括垂直于坐标轴的直线。

4:截距式:已知直线在x轴和y轴上的截距为a,b,则直线方程为x/a+y/b=1

5:一般式:任何直线均可写成Ax+By+C=0(A,B不同时为0)的形式。

直线方程相关知识点

求对称图形

⑴点(x1,y1)关于点(x0,y0)对称的点:(2x0-x1,2y0-y1)

⑵点(x0,y0)关于直线Ax+By+C=0对称的点:

(x0-2A(Ax0+By0+C)/(A^2+B^2),y0-2B(Ax0+By0+C)/(A^2+B^2))

⑶直线y=kx+b关于点(x0,y0)对称的直线:y-2y0=k(x-2x0)-b

⑷直线1关于不平行的直线2对称:定点法、动点法、角平分线法

高一数学上册必修三重要知识点 【第五篇】

矩阵乘法

矩阵相乘重要的方法是一般矩阵乘积。它只有在第一个矩阵的列数和第二个矩阵的行数相同时才有意义。一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑地集中到了一起,所以有时候可以简便地表示一些复杂的模型,如电力系统网络模型。

矩阵相乘的特点

当矩阵A的列数等于矩阵B的行数时,A与B才可以相乘。

乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。

矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。

高一必修三数学知识点梳理 【第六篇】

总体和样本

①在统计学中,把研究对象的全体叫做总体。

②把每个研究对象叫做个体。

③把总体中个体的总数叫做总体容量。

④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,x-x研究,我们称它为样本。其中个体的个数称为样本容量。

简单随机抽样也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础,高三。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

高一数学必修三知识点笔记归纳 【第七篇】

系统抽样

1.系统抽样(等距抽样或机械抽样):

把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。

K(抽样距离)=N(总体规模)/n(样本规模)

前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

2.系统抽样,即等距抽样是实际 因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

高一数学必修三知识点汇总 【第八篇】

(1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所

指定的操作。

(2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的

算法结构。

条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不可能同时执行

A框和B框,也不可能A框、B框都不执行。一个判断结构可以有多个判断框。

(3)循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理� 循环结构又称重复结构,循环结构可细分为两类:

①一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。

②另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。

注意:1循环结构要在某个条件下终止循环,这就需要条件结构来判断。因此,循环结构中一定包含条件结构,但不允许“死循环”。

2在循环结构中都有一个计数变量和累加变量。计数变量用于记录循环次数,累加变量用于输出结果。计数变量和累加变量一般是同步执行的,累加一次,计数一次。

高一年级数学必修三知识点整理 【第九篇】

直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的。角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:

注意下面四点:

(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;

(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

高一必修三数学知识点梳理 【第十篇】

1、直线方程形式

一般式:Ax+By+C=0(AB≠0)

斜截式:y=kx+b(k是斜率b是x轴截距)

点斜式:y-y1=k(x-x1)(直线过定点(x1,y1))

两点式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直线过定点(x1,y1),(x2,y2))

截距式:x/a+y/b=1(a是x轴截距,b是y轴截距)

做题过程中,点斜式和斜截式用的最多(两种合占90%以上),一般式属于中间过渡形态。

在与圆及圆锥曲线结合的过程中,还要用到点到直线距离公式。

2、直线方程的局限性

各种不同形式的直线方程的局限性:

(1)点斜式和斜截式都不能表示斜率不存在的直线;

(2)两点式不能表示与坐标轴平行的直线;

(3)截距式不能表示与坐标轴平行或过原点的直线;

(4)直线方程的一般式中系数A、B不能同时为零。

65 3530170
");