分数乘法知识点总结(实用5篇)

网友 分享 时间:

【前言导读】此篇优秀范文“分数乘法知识点总结(实用5篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

分数乘法计算题1

那么,我们在课堂教学中该如何避免这种简单的模仿情况,让学生扎实、有效、灵活地学用两律呢?

一、依托算理,多样分合

为了让学生很好地理解两律的计算本质,我们在教学中应从两律的算理入手,从算理中深刻地体会到两律的“分”“合”思想,从而能对计算题进行多样分合。那么两律的算理是什么呢?其实,两律的算理就是乘法的意义。乘法的意义指出:乘法就是求几个相同加数的和的运算。如:7×5指的就是7个5相加或5个7相加。下面就用算理来诠释两律。

4×9+6×9和(4+6)×9都是指10个9相加,其结果当然也是相等的。

通过对两律算理分析发现,不管是乘法结合律还是乘法分配律最终都是求几个几相加的运算。再进一步对两律进行分析,我们发现,它们都是对相同加数的个数进行“分”“合”而已。因此在教学过程中,不但要让学生明白两律算理,而且还要让学生根据算理任意地对计算题进行分、合。如:23×24可以分成23×2×12、23×3×8等,也可以分成23×(1+23)、23×(25-1)等。其中,用乘法进行分合的就是乘法结合律,用加、减法进行分合的就是乘法分配律。

算理的理解是为学生对计算题进行灵活地分合做铺垫的,当学生掌握了两律的算理时应及时跟进一些对计算题的分、合练习,以使学生能通过两律对计算题进行多样分合。如在学生刚学习两律后,我们可以进行以下此类的分、合练习:

75×4=25×( )×4 25×32=25×2×( )

25×32=25×( )×( ) 126×8=( +1)×8

23×16=( - )×16 98×13=( - )×13

算理是两律成立的依据,当学生在算理的基础上认识了两律,就能很好地运用两律对计算题进行分合,也就为运用两律进行简算打下了扎实的基础。

二、培养数感,优化简算

我们对计算题进行多样分、合的出发点是为了简化计算,如果对计算题进行分、合后反而使计算更加复杂,那就失去了分、合的意义。因此,我们在教学中除了让学生能对计算题进行多样分、合外,还要让学生懂得对最优分、合进行选择。那么怎样的分、合才是最优分、合呢?这就要求我们教师在教学中还要重视对学生数感的培养。

乘法结合律和乘法分配律作为一种运算定律,本身不是因为简便计算而存在的,只是它们的存在和使用可以让一些计算变得简便些。那么为什么两律能简化计算呢?这得益于一些特殊数的存在,如乘积是整百、整千的数,20和5、25和4、125和8等。又如接近整十、整百、整千的数,101、98、59等。因此,我们在课堂教学和日常练习中还要着重培养学生对一些特殊数的敏感度,例如看到25就能想到4及4的倍数,看到125能想到8及8的倍数,看到101能想到101=100+1,看到59能想到59=60-1,看到126能想到126=125+1,等等。只有当学生对数建立起一定的敏感度时,才能使学生主动、灵活、合理地运用两律来进行简算。

数感的培养不是一蹴而就的,需要我们进行长期的训练。当学生学习了表内乘法、两位数乘一位数、多位数乘两位时就应该有意识地多进行一些培养学生数感的练习,以加深学生对这些特殊数乘积的印象。如我们在学了两位数乘一位的乘法时可以经常性地进行25×2、25×4、75×4、25×8、50×8等诸如此类的练习,在学了多位数乘一位数时可以经常性地进行125×4、125×8、125×16等诸如此类的练习。

数感的培养是学生运用两律进行简算的前提。只有当学生对一些特殊数建立起了一定的敏感度时才能使学生在运用两律进行分合时想到分合的最优组合,才能最终实现运用两律进行简算的目的。

三、设计变式,灵活运用

当学生掌握了两律的算理,而且也培养了对一些特殊数的数感,那么让学生对一些计算题进行简算就不是一件难事了。然而,我们要让学生把运算律内化为自身的知识与技能,要让学生在计算中首先想到能否用两律的分合进行简算,则还需进行一些计算题简算的强化训练,这样才能使学生熟能生巧。但在安排练习时如果只安排一些标准的a×b×c=a×(b×c)、a×c+b×c=(a+b)×c这类计算题型,则不能很好地培养学生灵活地运用两律进行简算的能力。假使我们在安排练习时经常有意地安排一些两律简算的变式题,这样能更好地培养学生灵活运用两律来进行简算的能力。下面笔者介绍两种两律变式题:

1.隐性式两律简算题

所谓隐性式两律简算题是指没有明显的两律特征,看到题后不容易马上辨别能否用两律进行简算,有时需对两个数字都进行一下分合。如:75×16、375×16、126×32等,这些题都不容易马上看出能用两律来做,但确实能用两律来简算的,方法如下:

75×16=25×3×4×4=(25×4)×(3×4)=1200

375×16=125×3×8×2=(125×8)×(3×2)=6000

126×32=(125+1)×32=125×8×4+1×32=4032

以上此类的隐性式两律简算题只要掌握了方法计算并不复杂,我们在经过一段时间的训练后可以以口算的形式加以练习,这样更能培养学生灵活运用两律进行简算的能力。

2.复合式两律简算题

这种简算题往往糅合了乘法分配律和乘法结合律,此类型的计算题从表面上看有乘法分配律表象,但又没直接提供乘法分配律所需的数据,需先进行数据变换才能实现简算。

如:390×9+61×90=39×10×9+61×90=(39+61)×90=9000

45×24+57×24-48=45×24+57×24-24×2=(45+57-2)×24=2400

999×5+111×55=111×9×5+111×11×5=111×(9×5+11×5)=111×[(9+11)×5]=111×(20×5)=111×100=11100

以上此类简算题看上去比较复杂,但实际上就是依据两律多进行了几次分合而已。因为学生已经有了两律算理的支撑,此类题实际并不难理解,而且有助于打开学生的解题思路,培养学生灵活运用两律的能力。

通过对变式题的练习能帮助学生熟练、灵活地运用两律进行简算,能帮助学生把两律知识内化为自身的知识与技能。

分数乘法计算题2

1.乘数是三位数的乘法这一节主要教学,乘数是整百数的口算,乘数是三位数乘法的笔算和乘法估算。

我们必须十分重视乘数是整百数的口算教学,因为这个内容既是学生理解乘数是三位数的乘法法则的前提,又是学生正确进行乘法笔算所必需的口算技能之一。教学时首先讲清算理,可先通过直观图示,启发学生观察得出:交换被乘数和乘数的位置,积不变。接着类推规律,使学生知道算几乘以整百数可以想整百数乘以几。然后进一步引导学生理解,乘数是整百数的口算实质是以“百”为计数单位去计算。让学生在口述算理的基础上正确计算,得出结果(如7×200,想7和2个百相乘,得14个百,是1400,进而要求学生简缩思维过程,直接进行口算(如7×200,想7×2=14,再在14末尾添两个0)。其次要采取多样的练习形式。如看卡片算、看图表算、听算等,也可搞些“看谁口算得又对又快”的数学比赛、数学游戏等等,以此来激发学生口算的兴趣,培养学生思维的敏捷性和短时记忆能力。

三位数乘法笔算的关键是让学生在掌握计算法则的基础上,正确地进行计算。

教学时除应重视基本知识的教学、基本技能的训练外,还应注意以下两点:(1)让学生在尝试性练习中获得新知。如通过尝试性练习,让学生自己归纳出乘数是三位数的乘法法则。放手让学生“先做一做”,使他们在具体的计算中发现:当乘数的位数多于被乘数时,交换位置再乘,比较简便;使他们在不同计算方法的对比中归纳出:乘数中间有0时,可省略用0乘这一步,使计算简便。总之,要尽可能让学生通过自己的探索,获得新知,切忌简单灌输。(2)加强积的变化规律的教学。教材把积的变化规律作为例题来教学,不仅能使学生更好理解乘数末尾有0的简便运算,而且能为今后学习商不变性质、小数乘法、正比例的意义等知识打下扎实的基矗教学时应引导学生通过观察、讨论概括出积的变化规律,然后在练习中加以运用,从而逐步达到熟练掌握的程度。

乘法估算是选学内容。通过估算教学,一方面要使学生掌握估算方法,另一 方面要注意培养学生用估算检验计算是否正确的习惯,进一步提高计算技能。

2.除数是三位数的除法这一节包括用整百数除的口算除法、三位数除多位数的笔算除法,以及除法估算三个内容。教学的重点是让学生正确进行三位数除多位数的笔算。

三位数除多位数的关键仍在于试商。为了突出试商这一关键,教材采用了分散难点、各个击破的编排方法。教学时可根据这一特点先让学生熟练掌握一般的试商方法,即当除数接近整百数时,用“四舍五入法”来试商;再引导学生摸索出一些简便的试商方法,使学生在除数不接近整百数时,也能根据具体情况具体分析,灵活试商。

与以往教材相比,义务教材在进行商不变性质教学时增加了一个例题(例13),这个例题通过具体事例,使学生明白在有余数除法中,运用商不变性质进行简算时要注意余数的变化。教师应通过这一例题的教学,让学生尝试发现在有余数除法中,当被除数、除数同时扩大或缩小相同倍数(0除外)时余数的变化规律。

从而突破难点,使学生抓住余数变化规律的实质,深刻理解商不变性质。

除法估算也是选学内容。教学时同样要在让学生掌握估算方法的同时,培养学生运用估算检查除法计算正确性的技能和习惯。

3.乘、除法各部分间的关系这部分教材主要包括三个关系式:(1)一个因数=积÷另一个因数;(2)被除数=商×除数;(3)除数=被除数÷商。学生受求因数用除法、求被除数用乘法这一思维定势的影响,在运用第(3)个关系式时往往容易发生错误。为了帮助学生克服思维定势影响,教学时要注意以下两点:(1)进行直观教学,结合乘、除法的意义,让学生在观察、分析中总结出乘、除法各部分间的关系,形成正确、清晰的概念;(2)加强对比练习,让学生在比较、辨析中深化对乘、除法各部分之间关系的认识,从而达到正确运用。

分数乘法计算题3

一、在口算教学中进行拓展

三年级要学习三位数除以一位数和两位数乘两位数的口算。学生在理解了口算的算理,明确了算法以后,教师可将被除数的位数从三位改到多位,让学生想一想可以怎样算,为什么能这样算?如学习300÷3以后,拓展到3000÷3、30000÷3,使学生明确“被除数不管是几位数,只要末尾有零”的一类口算题的算法。学习整十数乘整十数的口算以后,拓展到整十数乘整百数、整百数乘整百数等口算。这样学生学到的口算方法就从一道题类化为一类题。在进行以上拓展的时候并没有加重学生过多的负担,学生只要运用知识的正迁移很顺利就掌握了一类题目的计算方法,在遇到单位转化的问题,出现整百或整千数的计算时,学生也能灵活解决了。假如按照书上的计算要求不进行一点拓展,如果在计算中稍有变化,有些学生是很难迁移运用的,只要出现被除数或者乘数稍有变化,学生就会因为没有学过而不知所措。因而在口算教学中加入拓展,是帮助学生提高学习效率,养成良好思维方式的好方法。

二、在笔算教学中进行拓展

三年级学习两位数乘两位数的笔算,四年级学习三位数除以两位数的笔算,关于整数部分的笔算学习就全部结束。其实学生到了五年级进行小数乘除法计算的时候常常会碰到多位数乘多位数的计算内容,比如计算圆周长面积的时候常常需要用到这个数去乘,乘数的数位会变多,除法中被除数与除数的数位也会变多。如果在整数计算阶段进行乘数及被除数、除数位数的拓展,到了五年级,多位数乘除法的笔算方法也可以直接迁移到小数的计算中。如果在整数计算阶段不拓展,那么学生在解决问题中碰到了多位数的乘除法计算就不能正确计算了。进行乘除法笔算教学拓展的方法也不一样。乘法从两位数乘两位数拓展到多位数乘多位数分两步走。先在三年级上学期学习三位数乘一位数的时候进行一次拓展,从三位数扩展到多位数乘一位数,让学生通过三位数乘一位数的算法迁移,明确多位数乘一位数,就要用一位数去乘多位数的每一位数。然后到三年级下学期,学习两位数乘两位数以后拓展到多位数乘两位数,多位数数乘三位数。以上乘法笔算的拓展都不需要另外增加课时,只需在新授时加入一两道题,进行算法迁移即可。而除法的笔算拓展内容需要另立一课时,对除法的笔算法则进行全面梳理,并且重点突出跟商0有关的笔算书写格式。除法笔算的拓展也分两步走。首先是三年级下学期学习了三位数除以一位数的笔算之后进行拓展,将被除数拓展到多位数除以一位数。本次拓展不需要增加课时,只要直接在三位数除以一位数新授课时增加一道四位数除以一位数的题目,学生就能将算法进行迁移了。在四年级上学期学习三位数除以两位数的笔算时,这次拓展需要另立一课时,帮助学生对于笔算除法的计算方法进行整体构建。实际上乘除法笔算的拓展不仅仅是帮五年级小数乘除法打基础,也是让学生在四年级阶段遇到比较复杂的问题时能顺利计算。

三、在简便运算中进行拓展

四年级学习混合运算以后,学生开始学习整数计算中的简便运算,到了高年级这些简便运算从整数拓展到小数与分数中。教材编写时,考虑到学生认知水平的局限性,四年级上学期只要求学习加法交换律结合律、乘法交换律结合律,下学期学习乘法分配率,整数阶段的简便运算。课本上虽然没有涉及减法与除法的性质,但是学生学习了加法与乘法的运算律,是否能避免将这些简便方法进行负迁移呢?学生遇到有些复杂的简便运算题涉及了减法与除法的性质,教师是否就题论题讲过就算了呢?到了高年级小数的简便运算的学习是否只限于加法与乘法的简便计算呢?基于这三点,我觉得学习了整数的简便运算需要拓展,而且拓展的内容较多,需要增加一些课时来帮助学生对比消化,以达到灵活运用。在四年级上学期学习加法与乘法的交换律结合律后,需要增加减法的性质与除法的性质,既可以帮助学生深刻理解加法与乘法运算律,又可以避免学生将这些运算律进行负迁移;下学期主要是学习了乘法分配率以后与上学期所学习的乘法结合律要进行对比强化,让学生正确建模,达到分辨清楚的效果。

分数乘法计算题范文4

一、学情分析

对一些基础性的数学知识有了初步的认识。学生已经比较习惯于新教材的学习思路和学习方法,大多数学生认识到数学知识无处不在,生活中处处有数学。这为学生对本册的学习打下了重要的基础,也为提高学生的解决问题能力和实践能力创造了条件。

二、教材分析

本册教材的教学内容包括:万以内的减法,两步计算式题和应用题,一个数乘一位数的乘法,除数是一位数的

除法,时、分、秒的认识,以及角和直角。

1、 万以内的减法是在百以内减法和万以内加法的基础上进行教学的。

2、 两步计算式题和应用题是在学生学习了加减混合运算、乘数混合运算、乘加(减)或除加(减)两步计算

式题的基础上进行教学的,这里要求学生进一步学习四则混合运算顺序,并要求学生用递等式计算。

3、 一个数乘一位数的乘法是在学生已经掌握乘法口诀,学会乘法竖式的写法以及口算100以内两位数加一位

数的基础上进行教学的,它进一步学习一个数乘两、三位数乘法的基础。

4、 除是一位数的除法是在学生已经掌握了表内除法,学会除法竖式的计算方法的基础上进行教学的。

5、 时、分、秒的认识是在学生学会看整时的基础上进行教学的。

6、 角和直角,教材通过实物图象,抽象出角,使学生知道角的各部分名称。

三、教学目标

1、掌握减法的笔算方法,能比较熟练地计算万以内的减法。

比较熟练的口算两位数减两位数。学会减法的验算方法,初步具有验算的习惯。

2、掌握两步计算式题的运算顺序,能正确地计算带小括号的

两步计算式题。学会分析应用题的数量关系,能分步列式或综合算式解答两步计算应用题。

3、掌握一个数乘一位数乘法的计算方法,能比较熟练地进行

笔算,能比较熟练地口算两位数乘一位数(积在100以内)。

4、掌握除数是一位数的计算方法,能比较熟练地进行笔算,学

会用乘法演算出发(包括有余数的除法)。能比较熟练地口算一位数除两位数。

5、认识钟面。认识时间的单位时、分、秒,知道相邻两个时

间单位之间的进率,学会简单的计算。初步建立时间单位的观念,养成爱惜时间的好习惯

6、通过实际操作,认识角和直角,知道角的各部分名称。学会用三角尺判断一个角是不是直角,会画直角。

四、教学措施

本训练,大好计算基础。(3)培养良好的计算习惯

3)设计多种形式的练习。

3、 结合教学内容,重视培养学生的数学能力。

分数乘法计算题5

关键词 分数应用题;教学;单位“1”

一、激发学生兴趣,消除惧怕心理

对于小学生来说,应用题是一个难度比较大的内容,特别是分数应用题,学生不理解,不会解题,教师讲解也似懂非懂。正因为这样,学生解不了习题,就会产生惧怕心理,失去学习的兴趣。兴趣是最好的老师。行为科学的研究表明:如果一个人对所从事的工作有兴趣,那么,他的工作积极性就高,就可以发挥其全部才能的80%;如果一个人对他所从事的工作没有兴趣,那么,他的工作积极性就低,只能发挥其全部才能的20%左右。对于学生的学习来说同样如此,因此,在教学中,教师除了精讲详讲外,应该多鼓励学生,使学生产生探究、努力学好的兴趣,才会对分数应用题不惧怕,才会努力去学习解答方法。

二、弄清分数乘除法的意义,以便正确解题

学生不能正确解答分数应用题,往往是弄不清分数乘除法的意义造成的。因些,在教学中,应当加强对乘除法意义的理解。数学知识存在很大的连贯性,教师还要多结合实际,让学生掌握各类应用题的解法,举一反三,通过练习,达到融会贯通,从而掌握分数应用题的解法。

三、让学生找准、抓住单位“1”

解答分数应用题的关键进找准、抓住单位“1”。在未接触分数应用题前,学生多数解答应用题还得心应手,但接触分数应用题后,特别是分数乘除法应用题,就弄不清了,往往是乘法应用题用除法来解,除法应用题用乘法来解,原因是找不准、抓不住单位“1”。因此,在分数应用题教学中,教师要教会学生找准单位“1”。怎么找呢?一般来说,题中谁的几分之几、占谁的几分之几、相当于谁的、比谁的多(少)……就把“谁”看作“1”。如,一条公路长300米,修了全长的■,修了多少米?“全长的■”,就是把这条路看作“1”,把一个整体平均分成5份,修了其中的3份,而“1”所表示的量是全长的长度,是已知的,就用乘法计算,列式:300×■。而另一类型也就是除法应用题。如:一条路,修了180米,是全长的■,这条路长多少米?“是全长的”也就是把“全长”看作单位“1”,它所表示的量是未知的,应该用除法进行计算。列式:180÷■。只要教会学生找准、抓住了单位“1“,并掌握单位”1“是已知的用乘法,是未知的用除法进行计算这一要领,学生解答分数应用题就易如反掌了。

四、揭示知识的内在联系,教会学生进行知识迁移。

分数乘法的意义与计算法则是建立在整数乘法的意义与计算法则的基础上,由此,教材在先讲分数乘以整数时,安排了两个复习内容,一是求几个几是多少,怎样列式?突出整数乘法的意义;二是同分母分数相加,为学习分数乘以整数的计算方法作好准备。教学时,就应紧紧抓住这两个复习内容,通过复习旧知,导出新知,运用旧知学习新知,使学生掌握学习新知识的迁移规律和迁移方法。教学例1就可分四步走:第一步,揭示例题,理解题意,抓住2/9块是什么意思,画出图示;第二步,引导学生想:每人吃2/9块,3个人就吃了3个2/9块,用以前学过的分数连加的方法求3个2/9是多少?并列式计算;第三步,引导学生根据整数乘法的意义,把连加算式改写成乘法算式;第四步,归纳出分数乘以整数的意义就是几个相同分数连加的简便运算;计算法则就是用分数的分子和整数相乘的积作分子,而分母则不变,能约分的先约分,可使计算简便。从而使学生从整数乘法的意义和计算法则,通过迁移较好地理解和掌握其分数乘以整数的意义及计算法则。

又如,带分数乘法,通常先把带分数化成假分数,学生先对通常难于理解,教学中就可通过揭示知识的内在联系,运用迁移的方法来帮助学生理解。如出现算式后提出:你能用以前学过的知识,用不同的方法计算吗?学生就会出现三种计算方法:一是把带分数化成有限小数,运用小数乘法计算;二是根据带分数的意义,运用乘法分配律来计算;三是把带分数化成假分数来计算。从比较中,学生不难发现,显然方法二是很麻烦的,就会感到方法一与方法三是简单的,这时教师再让学生计算,学生发现不能化成有限小数;从而看到带分数乘法把带分数化成小数来计算只有特殊性没有普遍性。从而认识到分数乘法中有带分数的,为什么通常先把带分数化成假分数,然后再乘的道理。

五、强化训练,熟能生巧

35 534193
");