大数据报告(8篇)

网友 分享 时间:

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“大数据报告(8篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

大数据报告【第一篇】

早在5000多年前,中国人就拥有了长伴一生的独特印记——名字,但对于名字的研究,由于缺乏数据支持,从古至今都比较稀少。

日前,中国首份姓名大数据报告《2016大数据“看”中国父母最爱给宝宝起什么名》出炉。

该报告由清华大数据产业联合会发起之一、清华大学“幸福科技实验室”支持项目、国内唯一以大数据和心理学为基础进行姓名研究和起名服务的专业机构“起名通”耗时3个月完成,抽取整理了(*),并综合覆盖了11亿人口的历史数据,是国内首份关于名字的全景式报告。

备受关注的中国人重名情况到底有多严重,报告首次进行了披露:“中国前100个重名率最高的名字,在全国覆盖的人口整体超过10%。”各个省份的重名严重度也有明显差异。“东北三省,其每一个省的前100个热名与该省人口之比,都能高于16%,而广东省的爆款名覆盖率则不到6%。”

再从年代看,随着大众受教育程度的普遍提升,重名情况已经有所好转,“80后”的爆款名覆盖率高达17%;而到了“00后”,这一比例下降到了8%。但名字的选择范围却很狭窄。20新生儿的热名一眼望过去,傻傻的分不清。报告认为,从众心理,创新精神不足,以及家长普遍强调“过好自己的日子”、缺少更多元化的考虑,影响了新生儿名字的文化韵味、寄寓深意和精神风骨。而各大商业网站为吸引用户点击特设的“男孩女孩好名字帖”与“生肖取名宜忌”帖,则成为“10后”高重名率背后的两大“黑手”。

最新一年的热名榜单,还能看出新一代父母对孩子最集中的'期望是“阳光、快乐”,传统对女子美丽温柔的要求已经不占主流,男孩起名也不像其父辈更强调坚强伟大、个人奋斗。一些代表美德的字,如诺、芷、恩、允、谦,正开始受到年轻父母的青睐,体现了时代对于“德行”的呼唤。

此外,报告对中国人的民族性格,子随父姓观念的松动,父母在育儿中的参与度,中性现象,流行、地域和外来文化对新生儿影响等,都从姓名视角进行了深入剖析,并提供了多纬度榜单。

“dt时代的大数据,必将深入各行各业,以服务大众为主,以给社会创造多少价值作为衡量标尺。姓名大数据报告的发布,是这样一个大趋势下的必然产物。”报告领衔人张襦心表示,“名字反映了父母的价值观,对孩子的性格引导具有重要意义。所以这份报告,不仅从姓名的微观视角记录了这个时代正往何处去,我们也希望它能为下一代文化素养和价值观提升尽一点力量,帮助他们遇见更好的自己。”

大数据报告【第二篇】

近年来,“大数据”这个概念突然火爆起来,成为业界人士舌尖上滚烫的话题。所谓“大数据”,是指数据规模巨大,大到难以用我们传统信息处理技术合理撷取、管理、处理、整理。“大数据”概念是“信息”概念的版,主要是对新媒体语境下信息爆炸情境的生动描述。

我们一直有这样的成见:信息是个好东西。对于人类社会而言,信息应该多多益善。这种想法是信息稀缺时代的产物。由于我们曾吃尽信息贫困和蒙昧的苦头,于是就拼命追逐信息、占有信息。我们甚至还固执地认为,占有的信息越多,就越好,越有力量。但是,在“大数据’时代,信息不再稀缺,这种成见就会受到冲击。信息的失速繁衍造成信息的严重过剩。当超载的信息逼近人们所能承受的极限值时,就会成为一种负担,我们会不堪重负。

信息的超速繁殖源自于信息技术的升级换代。以互联网为代表的新媒体技术打开了信息所罗门的瓶子,数字化的信息失速狂奔,使人类主宰信息的能力远远落在后面。美国互联网数据中心指出,互联网上的数据每两年翻一番,目前世界上的90%以上数据是近几年才产生的。,数字存储信息占全球数据量的四分之一,另外四分之三的信息都存储在报纸、胶片、黑胶唱片和盒式磁带这类媒介上。,只有7%是存储在报纸、书籍、图片等媒介上的模拟数据,其余都是数字数据。到,世界上存储的数据中,数字数据超过98%。面对数字数据的大量扩容,我们只能望洋兴叹。

“大数据”时代对人类社会的影响是全方位的。这种影响究竟有多大,我们现在还无法预料。哈佛大学定量社会学研究所主任盖瑞·金则以“一场革命”来形容大数据技术给学术、商业和政府管理等带来的变化,认为“大数据”时代会引爆一场“哥白尼式革命”:它改变的不仅仅是信息生产力,更是信息生产关系;不仅是知识生产和传播的内容,更是其生产与传播方式。

我们此前的知识生产是印刷时代的产物。它是15世纪古登堡时代的延续。印刷革命引爆了人类社会知识生产与传播的“哥白尼式革命”,它使得知识的生产和传播突破了精英、贵族的垄断,开启了知识传播的大众时代,同时,也确立了“机械复制时代”的知识生产与传播方式。与印刷时代相比,互联网新媒体开启的“大数据”时代,则是一场更为深广的革命。在“大数据”时代,信息的生产与传播往往是呈几何级数式增长、病毒式传播。以互联网为代表的媒介技术颠覆了印刷时代的知识生产与传播方式。新媒体遍地开花,打破了传统知识主体对知识生产与传播的垄断。新媒体技术改写了静态、单向、线性的知识生产格局,改变了自上而下的知识传播模式,将知识的生产与传播抛入空前的不确定之中。在“大数据”时代,我们的知识生产若再固守印刷时代的知识生产理念,沿袭此前的知识生产方式,就会被远远地甩在时代后面。

(节选自《文汇读书周报》,有删改)。

大数据报告【第三篇】

4月6日,联合交通部科学研究院对外发布《第一季度中国主要城市骑行报告》。该报告以ofo出行大数据为参考,首次采用城市骑行指数作为评估指标,对北京、上海、广州、深圳、天津、南京、西安、杭州等20座国内一二线城市的共享单车发展水平进行评估排名。

可以发现,在单车使用水平、节能减排水平、健康贡献水平、停车设施水平、服务环境水平和社会文明水平六个方面,每个城市的表现各有不同。行业专家分析称,该报告对透视我国城市慢行交通发展现状、追踪共享单车行业发展、推动智能绿色城市建设事业起到参考作用。

18~45岁人群成共享单车主要用户西安广州最男人、天津昆明最均衡。

报告显示,18~45岁人群成共享单车骑行的主力用户,占比接近90%,其中30岁及以下群体占比达到55%,30~45岁占比约35%。由此可见,共享单车的用户不仅覆盖年轻群体,也受到了中年群体的广泛认可和使用。

同时,在用户男女比例分布中,不同的城市区分为了两大派系。一个是以西安、广州为代表的五座城市成为了“最男人”的共享单车骑行城市,男性用户占比达到%~%,较高于女性用户。而以天津、昆明为代表的五座城市则成了“最均衡”的共享单车骑行城市,男女比例在48%~52%之间,可以说基本相差无几。但综合来看,女性用户占比能达到45%左右。

中国城市整体骑行水平分空间巨大综合指数六大榜单昆明东莞上榜。

报告显示,20第一季度中国城市整体骑行水平为分,其中北京以位居榜首,上海、成都分别以分和分紧随其后。除此之外,深圳、昆明、杭州、广州、南京、厦门、福州、武汉等八座城市也高于平均分,城市骑行水平较为领先。

而的整体骑行水平虽然较满分100分来看属于偏低水平,但考虑到年初共享单车才迎来一波的快速发展,诸多方面尚不完善,例如城市停车设施的建设,北京、上海、杭州三城虽然达到13分以上,但其他20座城市停车设施平均得分仅为分,远低于满分20分。未来,随着共享单车的健康发展、城市停车设施的建设、服务环境的提升等因素逐步完善,分数还将进一步上升。

报告同时给出“2017年第一季度主要城市六大榜单”,北京位列“停车设施相对完善”、“节能减排贡献最大”、“政府服务环境最好”三个榜单之首。昆明则成为“最爱骑共享单车的城市”,东莞成为“我骑行·我健康”的榜首城市。

城市文明程度杭州分排第一20城q1累计骑行亿公里。

报告针对社会文明程度,对各城市对共享单车的友好度进行了评分,杭州市以分排名第一,南京、西安分别以和排名第二第三,北京仅以分排名第九。在服务环境水平评估中,北京以满分15分位列第一。近期,全国各地陆续出台了针对共享单车的管理办法,如上海出台了《共享自行车服务规范》,成都推出了《成都市关于鼓励共享单车发展的试行意见》。

报告显示,我国20座城市第一季度累计骑行亿公里,相当于绕地球14794圈,日均累计骑行距离为659万公里,相当于地球赤道的164倍。不仅如此,20个城市第一季度人均累计骑行消耗热量6840千卡路里,相当于燃烧掉斤脂肪。

共享单车缓解城市交通出行难问题。

数据统计,从1995年至,随着民用汽车保有量从1040万辆攀升至亿辆,自行车的.保有量却从亿辆,急剧下降至亿辆。汽车成为代步工具的同时,给城市交通和生态环境也带来了极大压力,城市居民的出行成本急剧上升。

专家认为,共享单车+公共交通的出行模式,正逐渐替代家用汽车+步行+公共交通的出行模式,快速发展中的共享单车正改善着我国城市居民的出行模式,也对我国交通新体系建设产生深远影响。

大数据报告【第四篇】

前几年,上面还动不动将九亿农民挂嘴边,未来,我相信,上面也会经常说:九亿城市人。或者,更多。

我相信,就在不远将来。

世界正经历城市化,中国更是如火如荼。不久的将来,更大的城市,城市群,更多的人口,会成为常态。这盛况,我有生之年,应该能看到。

更大的城市,更多的人,绝大多数的人将生活在城市里。人们于是关心城市,关心它的一切。当然,也包括它的半径。

有意思的是,目前,中国的城市半径,普遍“不约而同”:约30km。

无论北京的16410km,上海的6340km,还是厦门的1699km,(岛内128km),半径都在30km左右(厦门稍微小,主岛太小),这背后的原因,其实简单:尖端科学的运用,以及科学的可复制型。

以前只有一线城市拥有的地铁,现在在二线基本全面开花,甚至,有些三线也大干快上。究其原因,不过是科学的发明,运用到一定时间后,其成本不断被降低,从而让其他规模较小,财力叫弱的城市,也能造得起。

90年代的地铁,以及建筑其上的销品贸,现在,二线能够“轻易”地复制,且因为经验和时间的积累,建造更先进、科学,搭配更合理,技术更先进。北京、上海的地铁一号线乘坐体验,运营速度,技术应用,未必有苏州、杭州的三号线好。

每一次技术的突破和革新,都让城市半径得到拓展。地铁发明以前,是公路、铁路时代,城市半径远没有现在大,公路、铁路发明之前,是马车时代,繁华的长安城,老百姓靠马车在城市里运行,东到西,十公里已经是极限。再大,活动极不方便(以马车的平时速度计算)。

汉长安城面积达36平方公里,是古代面积最大的都城遗址之一。

现在城市的半径得到极大提升,到达30km左右,地铁功劳不可磨灭。地铁不再是一线的标配,很多城市拥有地铁,并且大干快上。中国城市的半径,因此“不约而同”地扩展到同一长度。

地铁已是城市最高级的技术,最前沿的科技运用。在新的革命性技术还未到来之前,城市的半径,再难以突破。

那么,未来,城市的半径到底怎样呢?真的一直无法突破了?

在几十年前,公交车是人们出行的重要交通工具,当然现在也是,那时的公交车,不但破旧,而且速度、载客量、技术都不如现在。

这是必然,技术在前进。

公交最明显的变化,其实不是这些,而是运行方式。

开始公交都是首发尾至,一条条线路定好,一站一站站点定牢,司机早上出发,沿着线路,有序按序逐站停靠,到点,回到起点,下班。

后来,公交单独划出车道:公交专用,再后来,brt快速公交系统,不但线路专用,而且不再三五公里一站,而是拉长距离,提高速度,专程车道。

北京公交线路图。

这,大大提高了公交的运行速度和效率。长路途的人,可以较快时间到达目的地。当然,其他的线路,还是按原计划的行驶、停靠。

当一个城市的公交普及到线路全覆盖,站点全覆盖,还不能满足市民出行要求时,专线,长距离的公交运行系统出现了。

郑州brt。

其实,地铁也会遵循这个规律。目前,绝大多数的地铁网,还远远不够做到线路全覆盖,站点全程性。

纽约地铁图。

伦敦地铁图。

东京地铁图。

全国的城市,都在大干快上地,继续建地铁。

上海地铁未来效果图(2020)。

北京地铁未来效果图(2020)。

当大多数的城市地铁网,像公交网一样,全程覆盖,并且全站点覆盖时,地铁的进化,就会朝公交的专车道,brt快速公交系统进发:长站点,专业性,快速度的地铁,将不断诞生。

那时,天安门到通州,30分钟,南京路到临港,30分钟。

再以后,天安门到燕郊,30分钟,南京路到昆山、太仓,30分钟,------。

随着地铁的升级和改进,城市的半径进一步被扩大。城市在不断扩大,城市间的边界,越来越模糊。在960万平方公里上,除了几片土地建满高楼大厦,绝大多数的地方,将回归森林。

地球一片绿海,“原始社会”再现。

因而,环保是个伪命题,保护生态就是扯淡,退耕还林根本就没有必要。

作者:皮特。

公众号:peter。

文档为doc格式。

大数据报告【第五篇】

1月12日消息,财新传媒、滴滴出行主办的“知道·大数据智慧城市论坛”今日在京举行,论坛上,滴滴出行联合第一财经商业数据中心发布了《2016智能出行大数据报告》(以下简称“《报告》”)。

《报告》覆盖全国重点城市,基于滴滴(含优步)平台全量数据解读中国城市出行,并通过智能出行情况反映城市交通、居民生活、热点事件及分享出行所带来的意义,具有极高的参考借鉴及深度分析价值。

三四线城市拥堵加剧北京人均每年“堵”掉近9000元。

拥堵是大家对交通最直接的感受之一,无论是“影响中国互联网发展30年”的后厂村路,还是“堵点网红”北京大山子路口,堵车总能引起人们的共鸣和吐槽。2016年,一线城市平均车速略有上升,三四线城市平均车速下降明显,从的/h降至2016年的/h。这一年中,平均车速增幅较大的前三个城市为大连、常州和青岛,而下降幅度最大的城市为丽江、嘉兴、三亚等。

根据高峰期拥堵延时指数,西安成为2016年堵城冠军,延时指数为。20的拥堵冠军重庆今年位列第2位,而去年的亚军青岛2016年治堵效果显著,今年排名第9。受极寒天气、冰雪路面、市政建设等影响,哈尔滨也上榜十大堵城,位列第8位。

在此值得一提的是,尽管北京位列堵城第4名,但因“社会平均工资”较高,所以成了拥堵造成损失最高的城市,北京人每年损失8717元;在全国最堵的西安,人均拥堵成本为6960元,排名全国第3。

互联网行业工作时间长京东下班最晚。

在加班“重灾区”的互联网公司中,京东超越去年冠军奇虎360成为今年的“加班之王”,平均下班时间最晚,随后为360和阿里巴巴,看来这一年互联网行业中最拼命的还是电商公司。从年货节、美妆节、母婴节、双11到双12,节假日不够,电商造节来补,购物狂欢的背后也是无数员工加班加点的辛勤努力。在榜单前10名中,新浪、网易老牌门户网站也上榜,而今年的“网红公司”乐视位居第10,加班起来也很拼。

不仅加班多,互联网人群平均工作时间也偏长。相较于金融、传媒以及房地产等行业,互联网人群平均工作时间更长,每天超10小时,尤其是深圳码农,工作几乎占据了其一半的时间。而且码农们生活节奏更为固定,公司与家两点一线偏多。

媒体人异地奔波苦金融从业者“朝七晚五”

《报告》中,有一部分内容对当下关注度较高的传媒业、金融业、教师等几个职业群体做了分析,通过出行连接着生活的方方面面,通勤、餐饮、购物等各种出行场景,出行大数据进一步可以关照现实,看生活的潮起潮落。

《报告》发现“隔行如隔山”,每个行业出行差异较大。传媒人工作随机性较大,处于随时待命状态,出行峰值曲线较为平缓;同时他们的出差相比最为频繁,往返机场火车站及酒店的出行量接近1/5,密集的出差节奏使得他们一般直接从家出发奔赴外地。

金融从业者上班早下班也早,“朝七晚五”是他们的工作特点,同时他们应酬多夜生活也丰富,20%的人下班后直接奔向餐饮娱乐场所,夜晚餐饮订单也超出平均水平40%。同时,他们偏爱高档购物中心,北京的三里屯太古里、上海的`国金中心、正大广场都是“金领一族”经常光顾的地方。

出行数据看城市性格:绵阳最温情大连最小资。

《报告》还基于滴滴出行大数据平台的指数测算体系,发布d-index榜单,从不同维度窥见不同城市的性格特点。

根据滴滴顺风车免单占比,十大最温情城市为绵阳、南宁、金华、昆明、湖州等地,上榜的多为三四线城市。小城故事多,充满喜和乐,顺风车把陌生人连接在一起,共走一程路,惊喜和温情的故事总在路上发生着。

从目的地为健身场馆的数据来看,山西太原城市最爱健身的城市,其次为福州、佛山,一线城市中只有广州上榜;十大最爱读书之城长沙位列榜首,其次为青岛,温州;最休闲也就是去往休闲娱乐场所占比最高的城市为,南宁、太原、大连等;最小资的城市为大连、绍兴和上海,那里的人去往咖啡厅、酒吧、电影院占比最高;《报告》同时显示,天津位列十大海鲜之城冠军,重庆居于十大火锅之城榜首。

杭州智能渗透率居榜首贵阳发展前景可期。

作为世界领先的移动出行平台,滴滴出行基于大数据的机器学习技术,在中国超过400个城市为近4亿用户提供包括出租车、专快车、顺风车、公交、小巴、代驾、试驾、租车、企业级等多种出行服务。

从智能渗透率来看,一二线城市依然整体优势明显,杭州继续位居榜首。珠三角地区总体渗透率较高,在用户渗透率排名前10的城市中占据4席,分别是深圳、广州和东莞、珠海。

在各级城市月人均出行次数上,三四线城市与一二线城市相比仍有较大差距。月人均出行次数排名前五的城市依次是天津、青岛、北京、杭州、宁波。

根据智能渗透率,出行活跃度和便捷程度等综合指标测算的智能出行发展指数,杭州北京广州深圳成都排名前五,一线城市和省会城市明显更高。排名前20的城市中有8个为珠三角和长三角城市。而潜力城市(二、三、四线城市)多为长三角、珠三角和京津冀地区的二线和三线城市,西部城市贵阳排名第7,前景可期。

大数据报告【第六篇】

摘要:大数据时代的数据格式特性首先让我们先来了解一下大数据时代的数据格式特性。从it角度来看,信息结构类型大致经历了三次浪潮。必须注意这一点,新的浪潮并没取代旧浪潮,它们仍在不断发展,三种数据结构类型一直存在,只是其中一种结构类型往往主导于其他结构:结构化信息这种信息可以在关...根据idc的调查报告预测到2020年全球电子设备存储的数据将暴增30倍,达到35zb(相当于10亿块1tb的硬盘的容量)。大数据浪潮的到来也为企业带来了新一轮的挑战。对于有准备的企业来说这无疑是一座信息金矿,能够合理的将大数据转换为有价值信息成为未来企业的必备技能。恰逢此时,csdn专门针对企业相关人员进行了大规模问卷调研,并在数千份的调查报告中。

总结。

出现今企业大数据业务的现状。在此我们也将调研结果展示与此以供大家参考。

大数据时代的数据格式特性首先让我们先来了解一下大数据时代的数据格式特性。从it角度来看,信息结构类型大致经历了三次浪潮。必须注意这一点,新的浪潮并没取代旧浪潮,它们仍在不断发展,三种数据结构类型一直存在,只是其中一种结构类型往往主导于其他结构:

结构化信息——这种信息可以在关系数据库中找到,多年来一直主导着it应用。这是关键任务oltp系统业务所依赖的信息,另外,还可对结构数据库信息进行排序和查询;半结构化信息——这是it的第二次浪潮,包括电子邮件,文字处理文件以及大量保存和发布在网络上的信息。半结构化信息是以内容为基础,可以用于搜索,这也是谷歌存在的理由;非结构化信息——该信息在本质形式上可认为主要是位映射数据。数据必须处于一种可感知的形式中(诸如可在音频、视频和多媒体文件中被听或被看)。许多大数据都是非结构化的,其庞大规模和复杂性需要高级分析工具来创建或利用一种更易于人们感知和交互的结构。

企业内部大数据处理基础设施普遍落后。

从调查结果可以看出,接近50%的企业服务器数量在100台以内,而拥有100至500台占据了22%的比例。500至2000台服务器则占据剩下%的比例。可以看出面对大数据现今大部分企业还没有完善其硬件基础架构设施。以现阶段企业内大数据处理基础设施的情况来看50%的企业面临大数据处理的问题(中小企业在面对大数据的解决之道应遵循采集、导入/处理、查询、挖掘的流程)。

但这只是暂时状况,“廉价”服务器设施会随着企业业务的发展逐渐被淘汰出历史的舞台,在未来企业基础架构体系的硬件选用上,多核多路处理器以及ssd等设备会成为企业的首选。facebook的opencomputeproject就在业界树立了榜样,opencomputeproject利用开源社区的理念改善服务器硬件以及机架的设计。其数据中心pue值也是领先与业内的其他对手。

而在具有大数据处理需求的企业中%的日数据生成量在100gb以下,日数据生成量100gb到50tb占据了%,而令人惊讶的是,日数据生成量50tb以上也有%的份额。数据量持续的增长,公司将被迫增加基础设施的部署。专利费用将一直增加,而开源技术,则省了这笔一直持续的专利费。对于急需改变自己传统it架构的企业而言,传统的结构化数据与非结构化数据的融合,成了所有人关心的问题。

企业面对大数据处理的挑战与问题。

现今大数据呈现出“4v+1c”的特点。既variety:一般包括结构化、半结构化和非结构化等多类数据,而且它们处理和分析方式有区别;volume:通过各种设备产生了大量的数据,pb级别是常态;velocity:要求快速处理,存在时效性;vitality:分析和处理模型必须快速变化,因为需求在变;complexity:处理和分析的难度非常大。

从图中我们可以看出资源利用率低、扩展性差以及应用部署过于复杂是现今企业数据系统架构面临的主要问题。其实大数据的基础架构首要需要考虑就是前瞻性,随着数据的不断增长,用户需要从硬体、软件层面思考需要怎样的架构去实现。而具备资源高利用率、高扩展性并对文件存储友好的文件系统必将是未来的发展趋势。

应用部署过于复杂也催生了大数据处理系统管理员这一新兴职业,其主要负责日常hadoop集群正常运行。例如直接或间接的管理硬件,当需要添加硬件时需保证集群仍能够稳定运行。同时还要负责系统监控和配置,保证hadoop与其他系统的有机结合。

而多格式数据、读写速度(读写速度是指数据从端点移动到处理器和存储的速度)以及海量数据是企业面临大数据处理急需解决的技术挑战。众所周知随着大容量数据(tb级、pb级甚至eb级)的出现,业务数据对it系统带来了更大的挑战,数据的存储和安全以及在未来访问和使用这些数据已成为难点。同时大数据不只是关于数据量而已。大数据包括了越来越多不同格式的数据,这些不同格式的数据也需要不同的处理方法。充分利用有用的数据,废弃虚伪无用的数据,是数据挖掘技术的最重要的应用。

企业内部数据分析与挖掘工具应用现状。

云时代企业数据挖掘面临如下三点挑战。挖掘效率:进入云计算时代后,bi的思路发生了转换。以前是基于封闭的企业数据进行挖掘,而面对引入互联网应用后海量的异构数据时,目前并行挖掘算法的效率很低;多源数据:引入云计算后,企业数据的位置有可能在提供公有云服务的平台上,也可能在企业自建的私有云上,如何面对不同的数据源进行挖掘也是一个挑战;异构数据:web数据的最大特点就是半结构化,如文档、报表、网页、声音、图像、视频等,而云计算带来了大量的基于互联网模式提供的saas应用,如何梳理有效数据是一个挑战。抛去价格因素之外可以看出反应速度慢、操作不方便、数据不准确、分析不准确这四项是企业数据分析与数据挖掘面临的主要问题。商业化解决方案固然成熟,但成本也是显而易见的。而具备在开源平台之上处理分析大数据能力的数据科学家则成为另外的一种选择。数据科学家具备专业领域知识并具备研究利用相应算法分析对应问题的能力,可帮助创建推动业务发展的相应的大数据产品和大数据解决方案。

从调查结果中我们可以看出hadoop占据了半壁江山,而同为开源的hbase也有将近四分之一的占有率。而商业化的数据分析与挖掘平台(如teradata、netezza、greenplum等)总共只有%的份额。短期来讲,开源分析将越来越广泛的使用,并且增长迅速。长期来看,混合技术的应用将在高度竞争的市场上出现,两者将同样有巨大的需求。可以预见的是,hadoop作为企业级数据仓库体系结构核心技术,在未来的10年中它将会保持增长。随着云时代的到来,企业面临的应用方式更加多元化,通过云的手段提供海量数据挖掘的方法,提高了挖掘的效率,增加了挖掘的精度,更利于挖掘应用的推广以及专业的行业知识库的构建。同时收集、存储庞大的新型数据充满了挑战,然而分析这些数据的新方法才是帮助最成功企业甩开竞争对手的利器。

大数据报告【第七篇】

12月8日消息,第一财经商业数据中心发布的《2016中国互联网消费生态大数据报告》显示,中国亿网民将成为潜在的互联网消费者。

80后、90后消费观念大不同。

报告显示,80后与90后作为互联网消费领域的核心消费人群,90后在线上拥有鲜明消费特征,主要的标签是娱乐至上、爱新鲜和个性化。90后在玩乐方面的兴趣广泛,既表现出对桌游、美食、夜生活的喜爱,也对二次元、游戏等虚拟领域有着更高的付费意愿。

相比较下,80后则更顾家,在互联网理财、互联网地产、电商等消费领域有显著的消费特征,是互联网消费的主力人群。从阅读内容方面看,80后更加偏爱看健身、旅游、时尚、房产等话题的资讯;购物方面看,80后也更偏爱大家电、汽车用品、童装等居家物品,由此可以看出,80后互联网消费者特征的关键词是家庭化、品质和资讯控。

网红借力电商成“吸金王”

今年电商和社交的融合成为一个典型现象。数据显示,红人经济的发展使得红人店铺的浏览成交高于一般女装店铺,近50%的粉丝有重复购买的行为,并且规模大的红人店铺比一般红人店铺转化率高出57%。可以看出电商红人的店铺具有粉丝粘性高、高浏览高转化以及销售爆发力强的优势。

便捷和品质成互联网消费核心诉求。

移动互联网的渗透和众多新应用的兴起使得我国互联网消费生态不断孕育繁衍,消费者的需求也因此更加清晰细分,便捷与品质的诉求是两大明显特征。

报告提出,消费趋势的便捷主要体现在降低门槛、资源优化、服务整合和随时随地四个特性。以滴滴出行为例,滴滴优化夜间运力资源极大满足了人们夜间个性化出行的需求。数据显示,机场、火车站、餐饮等夜间交通资源不足的地方,使用滴滴出行的偏好度均呈现上升趋势,体现出网约车满足了消费者的`交通需求。

需求“品质化”则大大促进了商家运营发展轨迹的高端化、定制化、专业化和服务化。报告数据显示,从趋势上看,飞猪三年跟团游的增幅高于自由行的增幅,且跟团游中有近8成的订单数是当地游,可以看出组件式的“diy自由行”已成为了消费者旅游出行的新风尚,同时也反映了多元化的自由行产品为消费者提供了更丰富的定制体验。

大数据报告【第八篇】

为全面贯彻落实党的十九大和习近平总书记来川视察重要讲话精神以及中央、省委、州委关于加强调查研究的决策部署,我单位在开展“大学习、大讨论、大调研”活动中,积极探讨全县大数据中心智慧城市建设及调研,现将具体调研情况做如下汇报:

一、全县交通运输概况。

截止目前,全县现有各级公路公里,其中:国道213线公里,省道301线公里,县道公里,乡道公里,村道公里,专用道公里,隧道道路公里,以县城为中心的公路路网基本形成,并实现了公路“三个100%”,即:100%的国省公路黑色化、100%的县乡道路硬化、100%的村道水泥硬化。全县共有客运班线14条、客运班车53辆,公交车20辆、出租车101辆、农村客运车辆105辆、目前通农村客运车辆建制村91个,乡镇15个。

二、目前交通运输困境。

近年来,我县的交通建设及道路运输虽然取得了一定成绩,公路通行及客货运周转能力得到大幅提升,广大群众的出行问题得到解决,但随着经济社会的发展和来松游客的大量增加,原有道路设施及运输承载能力已不能适应当今需求,仍面临着极大的困难:一是全县农村公路的“建、管、养、运”存在范围广、站线长、任务重等难题。二是全县农村客运存在辐射范围严重不足的情况。三是道路安全运输及日常出行存在严重的安全隐患。四是交通信息共享数据平台严重滞后。

二、下一步打算。

1/2。

下一步,我单位将积极开展交通大数据中心建设相关工作。一是及时将农村公路建设情况通过政府信息网站、部门微信进行实时政务公开,完善共享数据平台,提升行业内部信息公开化水平。二是积极开拓农村客运班线线路,建立客流量及班线数据共享平台,提升农村出行的便捷性及时效性。三是建设航线、铁路、公路、物流、营运车辆、从业人员、地理位置等共享基础数据库,以及行政许可、执法管理、信用评价、应急指挥等主题数据库,在合理控制权限的基础上向行业各级管理部门及社会公众提供综合信息查询、统计分析等信息共享服务。四是利用数据共享平台,对营运车辆驾驶人及车辆信息进行联网登记并公开,提升出行安全性,严厉打击非法营运车辆。

2/2。

35 2100731
");