高中数学基本知识点总结(实用3篇)

网友 分享 时间:

【导言】此例“高中数学基本知识点总结(实用3篇)”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

证明垂直的方法1

可以直接证明它们的夹角为90°;证明其它两个角互余。如果是高中生的话,还可以证明两条直线的斜率的乘积等于-1,常见的有:等腰三角形的顶角平分线或底边的中线垂直于底边;三角形中一边的中线若等于这边一半,则这一边所对的角是直角;在一个三角形中,若有两个角互余,则第三个角是直角;邻补角的平分线互相垂直。

垂直,是指一条线与另一条线相交并成直角,这两条直线互相垂直。通常用符号“⊥”表示。

设有两个向量a和b,a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0 。

对于立体几何中的垂直问题,主要涉及到线面垂直问题与面面垂直问题,而要解决相关的问题,其难点是线面垂直的定义及其对判定定理成立的条件的理解;两平面垂直的判定定理及其运用和对二面角有关概念的理解。

①在同一平面内,过一点有且只有一条直线与已知直线垂直。垂直一定会出现90°。

② 连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

③点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

连续函数的性质2

有界性:闭区间上的连续函数在该区间上一定有界。最值性:闭区间上的连续函数在该区间上一定能取得最大值和最小值。介值性:若f(a)=A,f(b)=B,且A≠B。则对A、B之间的任意实数C,在开区间(a,b)上至少有一点c,使f(c)=C。

1连续函数有何性质

有界性

所谓有界是指,存在一个正数M,使得对于任意x∈[a,b],都有|f(x)|≤M。

证明:利用致密性定理:有界的数列必有收敛子数列。

最值性()

所谓最大值是指,[a,b]上存在一个点x0,使得对任意x∈[a,b],都有f(x)≤f(x0),则称f(x0)为f(x)在[a,b]上的最大值。最小值可以同样作定义,只需把上面的不等号反向即可。

介值性

这个性质又被称作介值定理,其包含了两种特殊情况:

(1)零点定理。也就是当f(x)在两端点处的函数值A、B异号时(此时有0在A和B之间),在开区间(a,b)上必存在至少一点ξ,使f(ξ)=0。

(2)闭区间上的连续函数在该区间上必定取得最大值和最小值之间的一切数值。

一致连续性

闭区间上的连续函数在该区间上一致连续。

所谓一致连续是指,对任意ε>0(无论其多么小),总存在正数δ,当区间I上任意两个数x1、x2满足|x1-x2|<δ时,有|f(x1)-f(x2)|<ε,就称f(x)在I上是一致连续的。

2函数的连续性

对于连续性,在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的。这种现象在函数关系上的反映,就是函数的连续性。简单地说,如果一个函数的图像你可以一笔画出来,整个过程不用抬笔,那么这个函数就是连续的。

线性组合是什么意思3

线性组合是一个线性代数中的概念,代表一些抽象的向量各自乘上一个标量后再相加。首先线性简单的说就量与量之间按比例、成直线的关系,线性传递意味着两个或多个线性系统的相乘。

线性代数的基本概念之一。设a₁,a₂,…,aₑ(e≥1)是域P上线性空间V中的有限个向量。若V中向量a可以表示为:a=k₁a₁+k₂a₂+…+kₑaₑ(kₑ∈P,e=1,2,…,s),则称a是向量组a₁,a₂,…,aₑ的一个线性组合,亦称a可由向量组a₁,a₂,…,aₑ线性表示或线性表出。例如,在三维线性空间P3中,向量a=(a₁,a₂,a₃)可由向量组a₁=(1,0,0),a₂=(0,1,0),a₁=(0,0,1)线性表出:a=a₁a₁+a₂a₂+a₃a₃。

线性生成

S为域F上向量空间V的子集合。

所有S的有限线性组合构成的集合,称为S所生成的空间,记作span(S)。

任何S所生成的空间必有以下的性质:

1.是一个V的子空间(所以包含0向量)

2.几何上是直的,没有弯曲(即,任两个span(S)上的点连线延伸,所经过的点必也在span(S)上)

35 1998455
");