高三数学考试分析总结【精选30篇】

文秘 分享 时间:

高三数学考试整体难度适中,知识点覆盖广泛,解题思路清晰,考生需注重基础与灵活运用,提升解题能力。下面是阿拉网友整理编辑的高三数学考试分析总结相关范文,供大家学习参考,喜欢就分享给朋友吧!

高三数学考试分析总结

高三数学考试分析总结 篇1

本学期以来,高三数学备课组全体老师围绕着学校的中心工作,以全面提高学生的思想和文化素养为工作目标,积极开展科组的教学教研活动,努力提高教师的思想素质和业务素质,在认真探讨数学教育的特点,结合新教材和学生的实际情况,努力实施自主学习的教学模式上,做了一些工作,现总结如下进入高三以来,在各级领导的关心和支持下,全体高三数学备课组重视做好三个方面的工作。

一、把握方向,夯实基础

我校学生在数学方面基础显得比较薄弱。针对这一情况,学校领导非常重视,在各种会议上多次就数学的问题作了重要指示,提出了很多关于强化数学学科的具体措施。进入高三以来,数学老师统一了认识,把教学重点放在强调基础知识方面,并且持之以恒,一以贯之。其中我们特别强调学生应该充分利用上课的时间,强调对课本知识的理解,达到积累知识,夯实基础的目的。

二、团结协作,群策群力

高三的复习内容庞杂,容量很大,任务艰巨就显得任务繁重。如果每个老师都各自为阵,只顾自己班级,那就会成为一盘散沙。高考是对学生综合素质的考查,更是对全体教师能力的考查。面对繁重的高考复习任务,个人力量就显得很微弱。因此,形成团结一心,精诚合作的团队精神就显得尤为重要。为此,一年来,我们扎实开展备课组活动,充分发挥备课组在备考复习中的组织、安排、指导、协调功能,发挥备课组的集体智慧,群策群力,确保总复习高效、有序的运行。坚持做到“四定”、“四统一”即备课活动做到定时间、定地点、定内容、定主讲人;统一进度、统一资料、统一作业、统一考试,强化整体协作意识,做到信息,资源共享。分析研究学生状况和各自的教学情况,并对优质生、边缘生给予更多的关注,确保其成绩稳步提高。我们充分利用备课活动及各类考试评析活动,大家充交流思想,畅所欲言,集思广益,优势互补。全体备课组的老师们彼此虚心学习,互相请教,蔚然成风。

三、紧扣《考纲》,有的放矢

XX年的高考是稳中有变动,准确了解“变”在何处,及时调整复习方向,意义非常重大。

针对考纲年年变化的情况,数学组特别要求每位数学老师都必须认真研究学习《考试大纲》、考试说明,和近三年的全国高考数学试题,特别注重研究《考纲》中变化的部分。凡是《考纲》中明确规定的考点,必须复习到位,不能有半点疏漏,对于有变化的内容则更加重视,绝不遗漏一个考点,也绝不放过一个变化点。

复习一个考点的同时,我们也结合了适当的训练,以期达到巩固的目的'。对于资料的选择,我们坚持精编试题,精心组合,不搞盲目训练,有针对性、阶段性、计划性。更不搞题海战术,题不在多,贵在于精,在于质量,让学生练有所获。对于每一次训练我们都必须精讲,而且讲必讲透,重在落实。在第二轮的复习中,针对学生主观题解题能力较弱的情况,数学组及时采取“每日一练”的办法,即每天做一题综合题,全批全改。通过强化综合题训练,掌握解题技巧,提高学生综合题解题能力。

此外,我们还根据领导小组的安排,精心安排数学的优质生辅导。针对这些不同层次的学生,我们不仅注意的学生知识与能力的提高,也注意加强了学习方法的指导,对他们提出了不同的目标和要求。例如,基础较好的学生我们就以更高的目标要求,力争在此基础上创造佳绩,而对于基础薄弱的学生则要求他们夯实基础,力争有较大的提高。注意加强与他们的沟通,消除学生的心理困惑,缓解考前心理压力,注意考后的心理疏导。通过这些措施,让参与辅导的学生在学习更加努力,心理更加健康,知识更加扎实,能力不断提高。

“长风破浪会有时,直挂云帆济沧海”前进的道路上有很多困难艰险,但我们将锲而不舍。“他山之石,可以攻玉”我们也将虚心学习别人的经验,不断地充实自己,同心同德,扎实工作。

高三数学考试分析总结 篇2

你们不要老提我,我算什么超人,是大家同心协力的结果。我身边有300员虎将,其中100人是外国人,200人是年富力强的香港人。—x年度上学期期末高三数学备课组工作总结在全体高三数学组老师的共同努力下我们圆满完成本学期的教育、教学也取得了一些成绩例如

统考成绩和区前一名在大幅度缩小理科数学名次提前了一名等现总结如下:

一、制定切实可行的计划并且一定要按照计划严格执行计划的安排进行复习

俗话说;凡事不预而不立。我说的切实可行的意思是计划要细致具体严格。一定要遵循计划的安排走。大家知道高三的复习其实不止我们数学这一科其他的学科也在内都是时间紧任务重要在有限的时间完成可以说是无限的复习内容不精心作以安排在复习中势必出现忙乱的现象也会容易出现顾此失彼的后果。在开学伊始我们全组高三数学组老师就制定出一份时间上、具体到每章每节要用多少课时的不至于流于形式的严格计划,在计划中不但要考虑教学内容的多少还要考虑在高考中占有的比重更要顾及哪些内容是我们值得付出时间和精力的等等一系列因素。使得大家在时间上有了紧迫感使得我们的教学内容更加有效率使得我们更能发挥积极性去充分地调动学生。

二、认真研究考试大纲重视基础

注重数学学科的思想渗透强化能力的培养。给学生科学合理适于接受的数学学习建议。一年一度的.《考试大纲》反映了命题的方向作为我本人哪一年担任高三课我都会研读考纲。这样不但可以从宏观上掌握考试内容做到复习不超纲;而且可以从微观上细心推敲对众多考点的不同要求分清哪些内容只要一般理解哪些内容应重点掌握哪些知识又要求灵活运用和综合运用复习中要结合课本对照《考试大纲》把知识点从整体上再理一遍既有横向串联又有纵向并联在教学中我也大胆的指导和建议老师们力争不要做太多无用功。有些内容就得敢于大胆的取舍因为题永远是讲不完也是做不完的在时间紧张的情况下我们一方面要稳住阵脚;一方面又不要给学生带来急躁的情绪。从今年的《考试大纲》看总体要求保持平稳,并在平稳过渡当中强调了试题设计的创新程度。

大纲要求试题难度更加符合教学的实际与高中学生学习的实际水平特别值得关注的是三角函数、立体几何两个模块的具体要求明显地降低了三角函数知识作为解题的工具没必要学习得那么深、那么难在立体几何的备考方面考生一般有求难的趋向这显然也是不必要的。因此在复习中加强基础知识的巩固和提高加强各知识板块间的联系和综合加强通性通法的总结和运用重视教材:

狠抓基础是根本;

立足中低档降低重心是策略;

过程中发展能力提高素质是核心

记得在开学初的大教研中,我们数学的所有老师展开了对各年高考试题的研讨大家的一致意见就是狠抓基础立足中档题,在复习过程中我们经常提醒学生多回顾课本、成立学习笔记和纠错本浓缩所学知识熟练掌握解题方法加快解题速度缩短遗忘周期,达到复习巩固提高的效果,以提高知识与能力的综合性、应用性、创新性为重点比如开始复习的内容是高考中的重中之重学生已经扔了两年的时间,而且是最抽象的刚上高中时掌握的就很最薄弱。这样我们就充分调动学生立足课本浏览以前的课堂笔记激活所有数学知识点。既给了学生自主学习的空间也为学生树立了备战高考的信心。以重点知识再复习为主,高三这一年的复习备考中我们一直采取段段清紧紧跟的原则。

所谓段段清就是复习完一个章节即时考查力求不留知识死角使得基础复习更完备知识脉络更清晰,所谓紧紧跟就是复习完这一章再连同前面复习的所有的内容一起再考一次,及时的巩固缩短了遗忘周期。在集体教研选择教学题目时尤其注重:

(1)强调知识的综合性及不同章节的内在联系;

(2)不断渗透重要的数学思想与方法

如:函数与方程的思想方法;数形结合的思想方法;分类讨论的思想方法;转化与划归的思想方法;运动与变换的思想方法等不断在复习过程中渗透;

(3)强化数学思维训练体现多一点,想少一点算或不急于算。也就是我们曾经说的:磨刀不费砍材功。

(4)反思解答问题时的开窍点优化解题时思维线路熟练解答问题的通性通法强化解答综合性数学高考试题的一般思维模式,就能不断提高综合分析问题和解决问题的能力。在二轮复习过程中我们基本采用了以学生为主体的练讲结合把所有的题目都让学生独立的完成然后有老师点评点播。达到精讲精练的目的也使学生不在题海中泛滥而是在规律和方法中寻求触类旁通举一反三游刃有余的学习境界。

三、精诚合作互相学习和谐共建奋战高考。

由于工作的安排我本人担任理科班的教学进度往往和文科不能保持一致这样在复习材料的准备上就要靠大家。在这里我们组里从来没有因为我不能及时准备材料而计较过有了什么想法有了什么建议教研时出现了什么点子,事后大家都能主动积极的查找材料。

四、一些比较好的做法:

1、每周小测至少一次;

2、每月或每单元须大测;

3、每周假期作业发滚动试题一份;

4、强调先练后讲及时订正

紧张而繁重的高三复习备考还没有画上了句号我们还须在奋战的大潮中一起披风展浪一起持舵前行,尽管我们不能成为最领先的弄潮儿但因为我们在尽心我们更在尽力,我们可以自豪的说;我们无悔。

全体高三数学组老师

高三数学考试分析总结 篇3

1.等差数列的定义

如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.

2.等差数列的通项公式

若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.

3.等差中项

如果A=(a+b)/2,那么A叫做a与b的等差中项.

4.等差数列的常用性质

(1)通项公式的推广:an=am+(n-m)d(n,m∈N_).

(2)若{an}为等差数列,且m+n=p+q,

则am+an=ap+aq(m,n,p,q∈N_).

(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公差为md的等差数列.

(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.

(5)S2n-1=(2n-1)an.

(6)若n为偶数,则S偶-S奇=nd/2;

若n为奇数,则S奇-S偶=a中(中间项).

注意:

一个推导

利用倒序相加法推导等差数列的前n项和公式:

Sn=a1+a2+a3+…+an,①

Sn=an+an-1+…+a1,②

①+②得:Sn=n(a1+an)/2

两个技巧

已知三个或四个数组成等差数列的一类问题,要善于设元.

(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….

(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.

四种方法

等差数列的判断方法

(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;

(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立;

(3)通项公式法:验证an=pn+q;

(4)前n项和公式法:验证Sn=An2+Bn.

注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.

高三数学考试分析总结 篇4

Card(AB)=card(A)+card(B)-card(AB)

(1)命题

原命题若p则q

逆命题若q则p

否命题若p则q

逆否命题若q,则p

(2)AB,A是B成立的充分条件

BA,A是B成立的必要条件

AB,A是B成立的充要条件

1.集合元素具有①确定性;②互异性;③无序性

2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法

(3)集合的运算

①A∩(B∪C)=(A∩B)∪(A∩C)

②Cu(A∩B)=CuA∪CuB

Cu(A∪B)=CuA∩CuB

(4)集合的性质

n元集合的字集数:2n

真子集数:2n-1;

非空真子集数:2n-2

高三数学知识点2

两个复数相等的定义:

如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di

a=c,b=d。特殊地,a,b∈R时,a+bi=0

a=0,b=0.

复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。

复数相等特别提醒:

一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。

解复数相等问题的方法步骤:

(1)把给的复数化成复数的标准形式;

(2)根据复数相等的充要条件解之。

高三数学考试分析总结 篇5

在校领导的关心下,李海军主任的指挥下,15届高三取得了辉煌的成绩,下面我就以下具体做法汇报如下:

一、思想方面

1、正确的指导思想,合理的教学计划是优秀成绩的保障。在高三开学前李海军主任定制好了实验班整个学年的工作计划以及工作重心。针对不同时期学生不同特点,定制好了对应的教学任务。

2、统一思想。平常教研活动中,由王国平老师布置安排工作,在工作计划制定前,大家一般否会献计献策,踊跃发表自己的观点,甚至会有争论,但是当计划制定后,不论是赞同的该计划的还是反对该计划的,我们都会坚定不移地执行下去,确保工作顺利完成。(整理专题,整理错题,整理试卷的方式方法等。)

二、教学工作方面

常规教学方面:

1、进度快。教学工作高效完成。15届数学组是高二上期开始加快教学进度的,5月份结束高三课程,利用暑期辅导,11月份一轮复习结束。我们正常教学时间不能缩短,只能在其他方面做出尝试,主要是缩短试卷、作业讲评时间,集中学生共性问题进行讲解,有些题目只提思路,不详细讲解。同时配备详细答案,学生可自行参阅。就是因为进度快,为我们后期的工作安排提供了时间上的保障。

2、一轮复习。中规中矩。实验班的话因为主要目的是清北,所以在一轮时就在解析几何和导数两节着重讲解,我整理了近三年各地市高考真题及模拟试题,汇编了不同题型,对经典热点题型进行着重讲解及练习,并及时依据学生作业及考试反馈的情况有针对性的讲评。

3、后一轮复习。一轮复习后学生普遍掌握了基本知识,基本技能,但是知识有遗忘,不熟练,应试技巧时间整体把握不足,因而设置一个“沉淀期”。期间每周三考,做到试卷批改不过夜,第一时间对试卷进行讲评。试卷类型有名校联考试卷,自编自整试卷,错题汇编试卷。难度上控制为两难一易。

通过考试,给予学生时间消化一轮知识,同时深化学生对知识的理解,老师并对学生答题规范做出要求。通过这一阶段学生考试的时间如何安排,应试突发事件处理上的能力有所提高。考试成绩有了质的飞跃。

4、二轮复习。中规中矩。我整理了各个专题,加深学生对知识体系的把握,同时注意知识点间的联系。实验班仍然注重导数和解析几何,同时配以大量练习,小卷或者考试。

5、二轮复习后。大约4月中旬到5月中旬期间,很多学生出现了“高原期现象”,包括不少种子选手,这个时期我的工作重心转移到了如何帮助学生克服心理上的障碍,我利用下午自习课,或者课外活动时间等一切可以利用的时间对学生进行心理疏导工作,同时每周对种子选手进行座谈会,解决心理学习上的各种问题。经过一段时期的调整,孩子们回到了巅峰状态,也迎来了高考,都取得了很好的成绩。

一分耕耘一分收获,经过高三的努力工作,最终得到了丰硕的回报。宏志班在高考中表现优异,其中5人考入清华北大。

竞赛方面:

15届竞赛基本上是从高二开始加强训练的。整个高二后暑期期间,我每天都是上午和下午备课和出题,学生下午考试,晚上讲卷,通过大量甚至可以说是超负荷训练,学生最终取得了优异的成绩,其中朱智斌同学和申奥同学获得省一等奖,另外7人二等奖,5人三等奖。

三、细节把握

1、从始至终重视书写与格式。

2、注意学生的心理健康。

3、注重学生的坏习惯的改正。

4、尖子生单兵较量

5、科学的成绩分析(先进的教学设备)

四、不足之处

复习时,尤其是一轮复习,不要凭历史经验来妄加猜测什么是重点什么不考,也不要觉得知识简单而略讲或不讲,一定要在一轮复习时涵盖所有的知识点。

高三数学考试分析总结 篇6

高考数学必考知识点归纳必修一:

1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

高考数学必考知识点归纳必修二:

1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

3、圆方程

高考数学必考知识点归纳必修三:

1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

高考数学必考知识点归纳必修四:

1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

高考数学必考知识点归纳必修五:

1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

高考数学必考知识点归纳文科选修:

选修1--1:重点:高考占30分

1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)

选修1--2:

1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。

高考数学必考知识点归纳理科选修:

选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数

选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:

高考的知识板块

集合与简单逻辑:5分或不考

函数:高考60分:①、指数函数②对数函数③二次函数④三次函数⑤三角函数⑥抽象函数(无函数表达式,不易理解,难点)

平面向量与解三角形

立体几何:22分左右

不等式:(线性规则)5分必考

数列:17分(一道大题+一道选择或填空)易和函数结合命题

平面解析几何:(30分左右)

计算原理:10分左右

概率统计:12分----17分

复数:5分

高三数学考试分析总结 篇7

第二部分函数与导数

1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;

⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、等);⑨导数法

3.复合函数的有关问题

(1)复合函数定义域求法:

①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:

①首先将原函数分解为基本函数:内函数与外函数;

②分别研究内、外函数在各自定义域内的单调性;

③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数的定义域是内函数的值域。

4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5.函数的奇偶性

⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;

⑵是奇函数;

⑶是偶函数;

⑷奇函数在原点有定义,则;

⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

高三数学考试分析总结 篇8

本学年本人担任高三年组数学教师,教课班级为4班、7班和27班三个班级,随着高考的结束,本学期教学任务圆满结束,我所教三个班都是普通班或复习班,学生的基础普遍是偏差的。高考数学试卷的特点是难度大,区分度大,高考所占权重大,数学也是高三学生最重视的学科。高三数学的教学直接关系着全校考生高考的成绩,数学教师的责任是重大的。下面就以下四点对本学期的教学工作进行总结:

一、任课班情

本学期所教授的三个班级具体班情各不相同:4班是普通文班,班主任是黄立学老师;7班是普通理班,班主任是刘永贺老师;27班是补习文班,班主任是陈秀娟老师。由于本人工作时间短的原因,在本学年之前,没有过文科班班级以及补习班班级授课经验,所以本学年尤其是刚开始的时候,面临着不小的压力与挑战,好在授课班级的三位班主任老师对工作积极负责,在工作上给予了我非常大的帮助,使我能短期内迅速适应班级特点,开展教学工作。

二、任课学情

我所教的三个班级,27班是文科补习班,相对学生比较重视该科,上课的时候比较认真,大部分学生都能专心听讲,课后也能认真完成作业。但是教授补习班就应该为学生的升学负责,他们之所以选择了复读,就是为了考取一个更好的大学,为此我们责无旁贷。对此,我狠抓学风,在班级里提倡一种认真、求实的学风,严厉批评抄袭作业的行为。与此同时,为了提高同学的学习积极性,开展了学习竞赛活动,在学生中兴起一种你追我赶的学习风气;4班是一个普通文班,本班数学底子很是不好,先后换过三任数学教师,但是本班有几名学生智力、反映都很不错,为此如何提升他们的成绩,以此调动班级成绩,是本学年的一个问题。另外,本班由于差生面太大了,后进生基础太差,考试成绩都很差,有些同学是经常不及格,调动提高他们的学习积极性、提升他们的数学成绩,是本学期工作的重难点;7班是普通理班,接手之前成绩也一直不太理想,分析原因,是因为本班学生成绩分化严重,形成了明显的几个梯队:学习靠前的梯队整体成绩都不错,但没有十分拔尖的学生。后续梯队干劲明显不足,被前面的同学落下了很大一截。后进生对学习数学的兴趣不高,因此如何提高后进生的学习兴趣,拉近梯队间差距,成为本班的工作要点。

三、任课教情

对于27班,由于班级学风相对不错,本班的工作主要是巩固基础知识,并提高做题的量与难度,在与普通班一样完成正常的教学任务之外,我还组织他们做了对应的数学报纸,并且进行了讲解。在平时的时候,注重培养学生高考的`读题解题能力,期望他们能在20xx年的高考中取得更好的成绩;对于4班,我的具体措施是找同学适当的谈心,让学优生之间互相竞争,以此来带动整个班级的数学学习气氛,对于后进生尤其是艺体特长生,我尽可能的发现他们的闪光点,及时给予表扬,课下经常与他们谈心,帮助他们明确学习目的,从学习上主动辅导他们,使他们不断进步,变被动学习为主动学习,让他们更有自信心;对于7班,学优生的问题不大,在他们学习松懈的时候,给予适当的提醒就可以了,关键难点在于如何提高后进生的学习积极性,拉近梯队间的差距。为此,我采取的措施是适当放慢本班的教学进度,尽可能更翔实明确的教学生如何读题、如何解体,注重学生做题及运算的能力培养,使大部分学生学习不掉队,后进学生不放弃。

四、教学具体措施

1、注重培养学生做选择填空题的能力

虽然高考中选择填空题占了80分,但它难度不是很大,高考考它们的方向是基础与全面,为顾及到各层次的考生(包括艺术类,体育类考生)高考一定要考基础,考试的知识点覆盖率应该尽量大,这些设计目标由选择填空题来完成。以它的目的来看,选择填空题的难度不应该大,一张卷有2-3道难度大的题就足够了,因此做好选择填空,是大部分学生得高分的关键因素。所以复习时,我注重培养学生自己的数学读题解题能力。选择填空题往往有一些技巧解法,如排除法,特值法,代入数值计算,从极端情况出发,等等,我除了在平时的训练,还作了选择填空题的专题训练以提高学生的解题技巧。从今年的高考实际看,选择填空题的难度不大,得满分的不少。

2、重视解答题。

我们在复习中提出重视解答题,同时不能丢了选择填空题,一定要求学生努力做解答题。因为从历年的高考看,高分学生成绩的好坏最终取决于解答题。所以在实际教学中我侧重解答题的教学,用较多的时间分析讲解解答题,给学生充分的时间去做解答题,如复习立体几何或解析几何时减少习题数量,每天就要求学生就作3-4道解答题,对学生区别要求,差一些的学生可以再少做一些,鼓励学生一定要努力做解答题。

3、握好高考的方向。

高考试卷的型式:22道试题,12道选择题,4道填空题,6道解答题,各题的得分比例都与去年的考试中心的命题试卷雷同。各章考查知识点在试卷中的比率与6个解答题的考查方向,都与去年考试中心的试卷的相似。我就是以这样的思想来指导高考复习。也就是说以去年的考试中心的6道解答题主要考查方向是我们复习的主攻方向。其中,数列与三角的题目没有办法预测,我们都进行了大量的训练,结果也是很不错,今年的文理试卷分别各考了一道大题,学生没有因为没复习到而影响高考的发挥。唯一遗憾的是,以往每年的不等式题,都是以解不等式的形式出题,今年一反常规,考了不等式的证明,我们在最后的三轮复习中,相对练的较少,部分学生答题出现困难。这更提醒我们在今后的教学中要更加深入的研究高考方向。

高三数学考试分析总结 篇9

09年的这一个学期是忙碌而充满激情的一个学期半年来的风风雨雨让我获益多多。表现的不仅是在教学上,更多的时候是自己的提高上!

一、科学备考认真命题

本学期我们在上好复习的同时,非常重视每次考试的命题工作为此,我们每一位老师都付出了大量的.心血从选题到打印出试题都很认真,从知识点的考察到学习内容的配备

我们都进行了认真的筛选和反复修改保证每次的命题都达到训练的要求!

二、重视课堂教学注重师生互动

我们每位数学教师都是课堂教学的实践者为保证新课程标准的落实,我们把课堂教学作为有利于学生主动探索的数学学习环境把学生在获得知识和技能的同时,在情感、态度价值观等方面都能够充分发展作为教学改革的基本指导思想把数学教学看成是师生之间学生之间交往互动共同发展的过程在教研组长的带领下紧扣新课程标准和我校"自主--创新"的教学模式在有限的时间吃透教材分工撰写教案以组讨论定稿,学生在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中使学生的智慧、能力、情感、信念水乳交融心度受到震撼,心理得到满足,学生成了学习的主人学习成了他们的需求学中有发现学中有乐趣学中有收获,这说明:设计学生主动探究的过程是探究性学习的新的空间、载体和途径,常思考常研究常总结,以科研促课改以创新求发展,进一步转变教育观念坚持"以人为本促进学生全面发展打好基础,培养学生创新能力",

以"自主--创新"课堂教学模式的研究与运用为重点努力实现教学高质量课堂高效率。

三、不断反思寻求备考的遗漏

我们把评价作为全面考察学生的学习状况激励学生的学习热情促进学生全面发展的手段,也作为教师反思和改进教学的有力手段除了认真讲解必考的知识点外我们还在教学之余不断反思,认真总结我们在教学中出现的问题尽量想出补救的方法和步骤为此我们分工合作将课本来了一次大扫荡把课本中的一些重要知识点进行再现通过试题的形式展现在每一位学生面前!尽量让学生以最短的时间获得最大的收益!将本着"勤学、善思、实干"的准则一如既往再接再厉把工作搞得更好。

高三数学考试分析总结 篇10

一、集合与简易逻辑

1.集合的元素具有确定性、无序性和互异性.

2.对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集.

3.判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.

4.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.

5.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.

原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.

8.充要条件

二、函数

1.指数式、对数式,

2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.

(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个.

(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.

3.单调性和奇偶性

(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.

偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.

(2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.

复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义)

4.对称性与周期性(以下结论要消化吸收,不可强记)

(1)函数与函数的图像关于直线(轴)对称.

推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称.

推广二:函数,的图像关于直线对称.

(2)函数与函数的图像关于直线(轴)对称.

(3)函数与函数的图像关于坐标原点中心对称.

三、数列

1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系

2.等差数列中

(1)等差数列公差的取值与等差数列的单调性.

(2)也成等差数列.

(3)两等差数列对应项和(差)组成的新数列仍成等差数列.

(4)仍成等差数列.

(5)“首正”的递等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和;

(6)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和“奇数项和=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和-偶数项和”=此数列的中项.

(7)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.

(8)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).

3.等比数列中:

(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.

(2)两等比数列对应项积(商)组成的新数列仍成等比数列.

(3)“首大于1”的正值递减等比数列中,前项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前项积的最小值是所有小于或等于1的项的积;

(4)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和“首项”加上“公比”与“偶数项和”积的和.

(5)并非任何两数总有等比中项.仅当实数同号时,实数存在等比中项.对同号两实数的等比中项不仅存在,而且有一对.也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.

(6)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).

4.等差数列与等比数列的联系

(1)如果数列成等差数列,那么数列(总有意义)必成等比数列.

(2)如果数列成等比数列,那么数列必成等差数列.

(3)如果数列既成等差数列又成等比数列,那么数列是非零常数数列;但数列是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.

(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.

如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.

5.数列求和的常用方法:

(1)公式法:①等差数列求和公式(三种形式),

②等比数列求和公式(三种形式),

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.

(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法).

(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前和公式的推导方法之一).

(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和

(6)通项转换法。

四、三角函数

1.终边与终边相同(的终边在终边所在射线上).

终边与终边共线(的终边在终边所在直线上).

终边与终边关于轴对称

终边与终边关于轴对称

终边与终边关于原点对称

一般地:终边与终边关于角的终边对称.

与的终边关系由“两等分各象限、一二三四”确定.

2.弧长公式:,扇形面积公式:1弧度(1rad).

3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.

4.三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘余弦’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系为锐角

5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;

6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.

7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!

角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.

8.三角函数性质、图像及其变换:

(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性

注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如的周期都是,但的周期为,y=|tanx|的周期不变,问函数y=cos|x|,,y=cos|x|是周期函数吗?

(2)三角函数图像及其几何性质:

(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.

(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.

9.三角形中的三角函数:

(1)内角和定理:三角形三角和为,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方.

(2)正弦定理:(R为三角形外接圆的半径).

(3)余弦定理:常选用余弦定理鉴定三角形的类型.

五、向量

1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.

2.几个概念:零向量、单位向量(与共线的单位向量是,平行(共线)向量(无传递性,是因为有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是).

3.两非零向量平行(共线)的充要条件

4.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数,使a= e1+ e2.

5.三点共线;

6.向量的数量积:

六、不等式

1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.

(2)解分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);

(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);

(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.

2.利用重要不等式以及变式等求函数的最值时,务必注意a,b (或a,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).

3.常用不等式有:(根据目标不等式左右的运算结构选用)

a、b、c R,(当且仅当时,取等号)

4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法

5.含绝对值不等式的性质:

6.不等式的恒成立,能成立,恰成立等问题

(1)恒成立问题

若不等式在区间上恒成立,则等价于在区间上

若不等式在区间上恒成立,则等价于在区间上

(2)能成立问题

(3)恰成立问题

若不等式在区间上恰成立,则等价于不等式的解集为.

若不等式在区间上恰成立,则等价于不等式的解集为,

七、直线和圆

1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式((为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?

2.知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为.

(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等直线的斜率为-1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点.

(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.

3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是

4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.

5.圆的方程:最简方程;标准方程;

6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”

(1)过圆上一点圆的切线方程

过圆上一点圆的切线方程

过圆上一点圆的切线方程

如果点在圆外,那么上述直线方程表示过点两切线上两切点的“切点弦”方程.

如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程,(为圆心到直线的距离).

7.曲线与的交点坐标方程组的解;

过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程.

八、圆锥曲线

1.圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.

(1)注意:①圆锥曲线第一定义与配方法的综合运用;

②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆点点距除以点线距商是小于1的正数,双曲线点点距除以点线距商是大于1的.正数,抛物线点点距除以点线距商是等于1.

2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中,椭圆中、双曲线中.

重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点.

3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:

①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.

②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.

③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式

④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.

4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.

注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.

②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.

③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.

九、直线、平面、简单多面体

1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算

2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线.

3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.

4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.

如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),

如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心.

5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥三棱柱平行六面体

6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.

正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.

7.球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.

十、导数

1.导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数,C为常数)

2.多项式函数的导数与函数的单调性

在一个区间上(个别点取等号)在此区间上为增函数.

在一个区间上(个别点取等号)在此区间上为减函数.

3.导数与极值、导数与最值:

(1)函数处有且“左正右负”在处取极大值;

函数在处有且左负右正”在处取极小值.

注意:①在处有是函数在处取极值的必要非充分条件.

②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值.特别是给出函数极大(小)值的条件,一定要既考虑,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记.

③单调性与最值(极值)的研究要注意列表!

(2)函数在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”

函数在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;

注意:利用导数求最值的步骤:先找定义域再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小。

高三数学考试分析总结 篇11

1.不等式的定义

在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

2.比较两个实数的大小

两个实数的大小是用实数的运算性质来定义的,

有a-b>0?;a-b=0?;a-b<0?.

另外,若b>0,则有>1?;=1?;<1?.

概括为:作差法,作商法,中间量法等.

3.不等式的性质

(1)对称性:a>b?;

(2)传递性:a>b,b>c?;

(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

(5)可乘方:a>b>0?(n∈N,n≥2);

(6)可开方:a>b>0?(n∈N,n≥2).

复习指导

1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

3.“两条常用性质”

(1)倒数性质:①a>b,ab>0?<;②a<0

③a>b>0,0;④0

(2)若a>b>0,m>0,则

①真分数的性质:<;>(b-m>0);

②假分数的性质:>;<(b-m>0).

高三数学考试分析总结 篇12

等式的性质:

①不等式的性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:

(1)a>bb

(2)a>b,b>ca>c(传递性)

(3)a>ba+c>b+c(c∈R)

(4)c>0时,a>bac>bc

cbac

运算性质有:

(1)a>b,c>da+c>b+d。

(2)a>b>0,c>d>0ac>bd。

(3)a>b>0an>bn(n∈N,n>1)。

(4)a>b>0>(n∈N,n>1)。

应注意,上述性质中,条件与结论的逻辑关系有两种:和即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。

②关于不等式的性质的考察,主要有以下三类问题:

(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

高中数学集合复习知识点

任一A,B,记做AB

AB,BA ,A=B

AB={|A|,且|B|}

AB={|A|,或|B|}

Card(AB)=card(A)+card(B)-card(AB)

(1)命题

原命题若p则q

逆命题若q则p

否命题若p则q

逆否命题若q,则p

(2)AB,A是B成立的充分条件

BA,A是B成立的必要条件

AB,A是B成立的充要条件

1.集合元素具有①确定性;②互异性;③无序性

2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法

(3)集合的运算

①A∩(B∪C)=(A∩B)∪(A∩C)

②Cu(A∩B)=CuA∪CuB

Cu(A∪B)=CuA∩CuB

(4)集合的性质

n元集合的字集数:2n

真子集数:2n-1;

非空真子集数:2n-2

高中数学集合知识点归纳

1、集合的概念

集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。元素常用小写字母a、b、c、…来表示。

集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。

2、元素与集合的关系元素与集合的关系有属于和不属于两种:

元素a属于集合A,记做a∈A;元素a不属于集合A,记做a?A。

3、集合中元素的特性

(1)确定性:设A是一个给定的集合,_是某一具体对象,则_或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A={0,1,3,4},可知0∈A,6?A。

(2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。

(3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。

4、集合的分类

集合科根据他含有的元素个数的多少分为两类:

有限集:含有有限个元素的集合。如“方程3_+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。

无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。

特别的,我们把不含有任何元素的集合叫做空集,记错F,如{|R|+1=0}。

5、特定的集合的表示

为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。

(1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。

(2)非负整数集内排出0的集合,也称正整数集,记做N_或N+。

(3)全体整数的集合通常简称为整数集Z。

(4)全体有理数的集合通常简称为有理数集,记做Q。

(5)全体实数的集合通常简称为实数集,记做R。

高三数学考试分析总结 篇13

李茂平

高三教学事关重大,如何在教学中找到一些更贴近学生实际且有利于提高教学与复习的好方法。我在老教师的悉心指导下,在本期的教学中结合我的教学,我有一些不成熟的心得,先总结如下:

1、重视基础知识的复习,切实夯实基础

面对不断变化的高考试题,针对我校目前的生源状况,我在高三第一轮复习中,重视基础知识的整合,夯实基础。将高中阶段所学的数学基础知识进行了系统地整理,有机的串联,构建成知识网络。在第二轮复习中,我们仍然重视回归课本,巩固基础知识,训练基本技能。在教学中根据班级学生实际,精心设计每一节课的教学方案,坚定不移地坚持面向全体学生,重点落实基础,而且常抓不懈。使学生在理解的基础上加强记忆;加强对易错、易混知识的梳理;多角度、多方位地去理解问题的实质;形成准确的知识体系。在对概念、性质、定理等基础知识教学中,决不能走“过场”,赶进度,把知识炒成“夹生饭”,而应在“准确,系统,灵活”上下功夫。学生只有基础打好了,做中低档题才会概念清楚,得心应手,做综合题和难题才能思路清晰,运算准确。没有基础,就谈不上能力,有了扎实的基础,才能提高能力。

这样的高考复习的方向、策略和方法是正确的。从高考数学试题可以看出数学试卷起点并不高,重点考查主要数学基础知识,要求考生对概念、性质、定理等基础知识能准确记忆,灵活运用。高考数学

试题更侧重于对基础知识、基本技能、基本数学思想方法的考查。从学生测试与高考后学生的反馈看,成绩理想的学生就得益于此,这也是我们的成功经验。反之,平时数学成绩不稳定,高考成绩不理想的学生的主要原因就是他的数学基础不牢固,没有真正建立各部分内容的知识网络,全面、准确地把握概念。特别是高考数学试题的中低档题的计算量较大,计算能力训练不到位导致失分的同学较多。一位同学说:“我感觉我的数学学得还不错,平时自己总是把训练的重点放在能力题上,但做高考数学卷,感到我的基础知识掌握的还不够扎实,有些该记忆的公式没有记住、该理解的概念没有理解,计算不熟练,解答选择题、填空题等基础题时速度慢,正确率不高”。

2、重视精编精讲,提高学生的解题思维和速度

夯实“三基”与能力培养都离不开解题训练,因而在复习的全过程中,我力争做到选题恰当、训练科学、引伸创新、讲解到位。选题要具有典型性、目的性、针对性、灵活性,突出重点,锤练“三基”。力争从不同的角度、不同的方位、不同的层次选编习题。训练的层次由浅入深,题型由客观到主观,由封闭到开放,始终紧扣基础知识,在动态中训练了“三基”,真正使学生做到 “解一题,会一类”。要做到选题精、练得法,在师生共做的情况下,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成一些有益的“思维块”。还应注意针对学生弱点以及易迷惑、易出错的问题,多加训练,在解题实践中,弥补不足,在辨析中,逐步解决“会而不对,对而不全”

的问题。 贴近、源于课本是近年来高考题的一个特点,这就要求我们深入挖掘教材,如变换课本中例习题的背景、改变图形位置、增减题设或结论等,达到深化“三基”、培养能力的目的。要引申得当,我们还要注意充分发挥典型题的作用,同时深化推广或变式变形以及引伸创新。复习中我们重视过程,重视知识形成的过程,融会贯通前后知识的联系,切忌孤立对待知识、思想和方法。要讲到位,还要重视思维过程的'指导,揭示暴露如何想?怎样做?谈“来龙去脉”,在谈思维的过程中,应重视通性通法。

3、重视高三数学作业的布置和批改 ,

高三的复习时间是宝贵的,学生的时间与精力是有限的,所以我们教师对教学的安排,作业的安排要十分慎重。作业的安排一定要针对性、目的性强。作业留的太多太难是没有必要,一方面耗费学生的精力和时间,影响了其它学科的学习,另一方面可能使一些学生根本不能完成,逐渐失去学习数学的兴趣与信心而放弃学数学,这样的例子也是很多的。我的体会是作业每天要有基础题也要有提高题,量要适中,每天留12-14道习题,作业要重质,不要重量。

我在上课时十分注意教师的示范作用,经常示范答题如何规范些,其次将学生的解题的过程进行课前呈现,查找学生存在的漏洞,又生动形象地揭示了问题所在,教师再有针对性地进行改正,并说明为何要这样书写,为什么有些步骤可以在草纸上完成,这样书写的好处学生很容易接受的。

4、加强心理素质的培养,抓好学生的应试能力

考试的过程是紧张劳动的过程,既有体力上的,又有心理上的,想要在高考中取得好成绩,不仅取决于掌握扎实的数学基础知识、熟练的基本技能和出色的解题能力,还取决于考前的身体状况、心理状况和临场发挥。自信心和优良的心理素质是取得成功的重要条件,良好的心态可以确保水平的正常发挥。

因此,我们要加强学生心理素质的培养,向非知识、非智力因素要成绩。高三数学复习,不仅仅是数学教学,而应是数学教育。我们数学老师要用一个教师人格的魅力去打动学生,用科学的态度,刻苦钻研的精神去影响学生,注重激发学生的数学兴趣,帮助学生树立信 心,培养钻研精神。工作要有针对性,有数学天赋,数学成绩优秀的同学,重在督促,指出不足;中等生,重在鼓励,适当提问,调动学习积极性;对成绩差的同学,要特别重视发自内心的那种重视,帮他们找到差距,准确定位,树立信心,作业有针对性,多检查。同时要加强学习方法、复习方法指导。利用周练,模拟考机会,培养学生的应试技巧,提高学生的应试技巧,每次测试过后及时总结,采取单独谈话及集体探讨的形式对每次考试进行总结,让学生总结考前和考场上心理调节的做法与经验,力争找到适合自己的心理调节方式和临场审题、答题的具体方法,逐步提高学生的应试能力。

高三数学考试分析总结 篇14

付正军:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节,主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二个是平面向量和三角函数。重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三,是数列,数列这个板块,重点考两个方面:一个通项;一个是求和。

第四,空间向量和立体几何。在里面重点考察两个方面:一个是证明;一个是计算。

第五,概率和统计,这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。

第六,解析几何,这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是20xx年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七,押轴题,考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高三数学考试分析总结 篇15

不等式的解集:

①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

不等式的判定:

①常见的不等号有“>”“b”或“a

③不等号的开口所对的数较大,不等号的尖头所对的数较小;

④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。

任一x?A,x?B,记做AB

AB,BAA=B

AB={x|x?A,且x?B}

AB={x|x?A,或x?B}

Card(AB)=card(A)+card(B)-card(AB)

(1)命题

原命题若p则q

逆命题若q则p

否命题若p则q

逆否命题若q,则p

(2)AB,A是B成立的充分条件

BA,A是B成立的必要条件

AB,A是B成立的充要条件

1.集合元素具有①确定性;②互异性;③无序性

2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法

(3)集合的运算

①A∩(B∪C)=(A∩B)∪(A∩C)

②Cu(A∩B)=CuA∪CuB

Cu(A∪B)=CuA∩CuB

(4)集合的性质

n元集合的字集数:2n

真子集数:2n-1;

非空真子集数:2n-2

高三数学考试分析总结 篇16

三角函数

注意归一公式、诱导公式的正确性

数列题

1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

3.证明不等式时,有时构造函数,利用函数单调性很简单

立体几何题

1.证明线面位置关系,一般不需要去建系,更简单;

2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;

3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。

概率问题

1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

2.搞清是什么概率模型,套用哪个公式;

3.记准均值、方差、标准差公式;

4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;

高三数学考试分析总结 篇17

这一年的高三工作是辛苦的、忙碌的,但也是很有收获的。为了把这一届高三送好,为了使学生的数学成绩上一个新台阶,我和我们数学备课组全体老师群策群力也想了好多办法和措施,现将这一年来我们备课组做的工作总结以下,同时也把自己的一点想法说出来,与大家商讨。

第一部分:对本年度备课组工作的总结

一、团结协作,集体备课,发挥集体力量.高三数学备课组,在复习的内容、进度,在资料的征订、测试题的命题、改卷中发现的问题交流、学生学习数学的状态等方面上,既有分工又有合作,既有统一要求又有各班实际情况,既有“学生容易错误”地方的交流,又有典型例子的讨论,既有课例的探讨又有信息的交流。在任何地方、任何时间都有我们探讨、争议、交流的声音。

二、掌握学情,做到有的放矢。深入学生中去了解学生的实际学习情况,学习水平和学习能力,在多次模拟测试中,及时调动教学内容,加大课堂容量,提前渗透数学思想方法,使教师的教和学生的学都是符合学生的学习实际情况,做到了有的放矢,让每一位同学在课堂学习中得到属于自己的收益。我们文科和理科同志,最大的优势就是能够开展分层次教学,使每一个层次的学生都能学有所获。

三、关爱学生,激起学习激情。热爱学生,走近学生,哪怕是一句简单的鼓励的话,都能激起学生学习数学的兴趣,进而激活学习数学的思维。我们5个老师,有3人兼任班主任,平常都非常注意学生的教育,结合教学进行恰到好处的启发诱导,不断的鼓励学生,让学生感到成功的快乐。

四、抓好“三中”,树立学习信心。抓好“三中”即中等题、中等分、中等生,对学生来说认真研究好中等题、拿好中等分是基本,是高考信心的保证;抓好中等生是全面提高教学质量的根本。我们的学生实际就是这样,我们必须实事求是,做太难的题,一个学生没有基础,做不了,打击了学生的自信;做太简单的题,又不符合高考要求,所以我们把中等题作为练习的重点。

五、注重“三点”,培养学习习惯。高三复习注意到低起点、重探究、求能力的同时,还注重抓住分析问题、解决问题中的信息点、易错点、得分点,培养良好的审题、解题习惯,养成规范作答、不容失分的习惯。我们的学生基础一般,所以,一点要根据学生实际,放低起点,把学习的内容分解为学生容易把握的一个又一个知识点,把步子迈的慢一点,通过练习,及时反馈,把学生一步一步推向前进。

六、“内临”“外界”,关注全体学生。认真分析数学临界内的临界生和临界外的临界生的学习数学的状态,采用分层管理和分层教学。比如说每次测试都能在前10名分以内的同学,应给他们以自由度,课后可做一些适合自己的题目。对一些优秀学生,我们采用了科组集体力量加强提高辅导,激起学生的竞争意识,增强有效性;对一些数学“学困生”,采用了低起点,先享受一下成功,然后不断深入提高,以致达到适合自己学习情况的进步和提高。尤其在考前,我们对优等生和数学“学困生”,利用自己的休息时间,个别辅导,或交换老师辅导,有的放矢,收到了较好的效果。

七、心理教育,助长学习成绩。学好数学,除了智力因素以外,还有非智力因素特别是心理方面,一些同学害怕学不好数学,或者以前数学成绩一直不好,现在也一定学不好等,我们采用了个别交流学习方法、学习心得等,告诉学生只要做好老师上课讲解的,课后加强领会、总结,一定会有进步的,不断关怀、帮助、指导,学生积极性提高,问的问题也多了起来,学习成绩也渐渐提高了。

第二部分:对后期高三的几点建议

一、一轮复习应细,但时间不宜太长。作为数学科的教学,第一轮复习知识、方法、题型要全面一些,不仅求数量,更重要的是求质量,是实实在在的学会。例如例题分析,就不能只有老师讲,要给学生思考时间,最好学生先做一做,做5-10分钟再讲,老师在讲时要动员学生参与,领着学生读题、分析、板书、归纳,不能放过影响成绩的任何一个细节。让学生实实在在的体会综合题是怎样入题的,怎么样书写的,得分要点是什么,又包含哪些规律与数学思想方法,特别是数学思想方法,作专题讲是没有多大用的,高考又要考,所以平时要渗透到每一个试题中去。虽然一轮复习要细,但战线不可拉的过长,这样容易造成复习到后面忘了前面的内容。文科我认为至少在春节前结束一轮复习,理科也要在寒假补课后结束一轮。

二、二轮应按知识或题型为模块复习。往届的二轮复习大部分时间和精力放在思想和方法上,常常是老师讲的有条有理,头头是道,学生也能听懂,但往往与应用结合不到一块,见不到实质性效果。所以二轮复习应结合学生的实际情况和考试大纲,有针对性的进行题型训练,从这一届的情况看效果还是不错的。

三、充分利用好周练,做好巩固和检测工作。周练各个年级都有,但高三的周练应有别于高一高二,高一高二处于学习新知识的阶段,周练的内容当然应以近段学习的知识为主要对象。而高三处于对学过的知识进行复习和提高的阶段,所以高三的数学周练最好小题应出复习过,解答题应有两道高考常考的而还没有复习的题型。通过这种形式也可以了解学生的不足,以便在下面的复习过程中有的放失。

四、“重读”考卷,在纠错训练中提升能力。在平时的教学和阅卷后,我们感到提高学生数学成绩的主要障碍有以下几个方面:①双基不扎实,认知结构不完善:基础知识、基本技能掌握不扎实,常用公式记不准确,造成了不应该的失分。②思维欠缜密,缺少书面表达的主要环节:对于含字母的问题,对字母的分类讨论不够到位。③综合水平欠佳,运算能力薄弱,做题时往往是“会而不对”。我认为应从“错题”入手,争取实现能力超越。由于错误常具有“重复性”,一般学生在过去的练习中已暴露了他们解题中可能出现的问题。如果我们在综合复习阶段,收集了部分学生的“纠错本”,对他们曾经出现的错误进行了整理、归类,编写小题训练试题发给学生练习并进行讲解,就可以使学生的解题错误得到了纠正,实现了数学解题能力的超越。

五、精编试题,做到“张弛”有度。高三学生要做很多试题,但学生的时间是有限的。如何解决二者之间的矛盾,老师做的工作是非常关键的。任何一套试题发到学生手里之前,我认为老师都应现做一遍,最好是试题的难度和所考察的知识点有第一手材料。不能不管三七二十一,先把试卷发下去,难了不讲或把答案贴出去了事。另外,适当做一些综合卷要注意的是:1.限时完成,没有限时,应试能力就很难培养上去;2.不要放过有难度的题,没有一定的难度的训练,学生的心理承受能力和学生思维的全面性、深刻性是无法培养上去;3.通过做综合题,学生应自觉寻找成绩的提高点,采取切实可行的措施解决,如某一章节的内容不到位,应及时巩固。只有做到学生做的都是精编试题,才能“张弛”有度。

第三部分:一点想法

一、高三应有校本课程。编写高三复习教材就是做学问,有一些事情需要解决,一章中有哪些知识,有哪些题型,有哪些方法,如何渗透数学思想;哪些内容是重点,哪些内容是热点,哪些内容是难点,这些内容如何安排才能更好的突破;章与章之间有没有重复,知识是否到位,表达是否准确,题目与解答甚至标点符号是否有错误;第一轮与第二轮如何联系等等.我认为开始阶段我们可以选择一本适合我们学生的书作为“母本”,添加进我们自己的一些东西,经过几年的运作,就有了具有我们自己特色的校本课程了。

二、月考应是自己命制的试题。命制试题也是做学问的一种.在命制一套试题时,我们首先要做的是安排好内容与难度,内容选择与难度控制是一次考试是否能达到目标的关键.其次在一套试题中,我们还应有一些自己的东西,至少有一两个是自己原创的新题,虽然全部题目自己原创是不太现实的,因为教师没那么多精力,但是没有自己东西的试卷是没有新意的,没有创新意识的教师是培养不出有创新意识的学生的,不管教材怎么改变.目前,有的老师工作了七八个年头,还单独不能完成一套试题的命制工作,所以这对教师的成长也是有利的。

三、加强任课教师对班级的管理。一个班级的管理的好与坏,班主任的工作固然是很重

要的,但对一个班级的管理,只靠班主任一人是不够,任课老师应负起责任来。最起码要管理好自己的课堂,完成好自己的教学任务,不能有事就找班主任,或只讲课不管理。若是这样的话,班主任的工作就不那么好做了。

高三数学考试分析总结 篇18

考点一:集合与简易逻辑

集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型、

考点四:数列与不等式

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查、在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目、

考点五:立体几何与空间向量

一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)、在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

考点六:解析几何

一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

考点七:算法复数推理与证明

高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”、考查的热点是流程图的识别与算法语言的阅读理解、算法与数列知识的网络交汇命题是考查的主流、复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大、推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问、

高三数学考试分析总结 篇19

1.不等式的定义

在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

2.比较两个实数的大小

两个实数的大小是用实数的运算性质来定义的,

有a-b>0?;a-b=0?;a-b0,则有>1?;=1?;b?;

(2)传递性:a>b,b>c?;

(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

(5)可乘方:a>b>0?(n∈N,n≥2);

(6)可开方:a>b>0?(n∈N,n≥2).

复习指导

1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

3.“两条常用性质”

(1)倒数性质:①a>b,ab>0?b>0,0;④0

(2)若a>b>0,m>0,则

①真分数的性质:(b-m>0);

②假分数的性质:>;0).

高三数学考试分析总结 篇20

一、努力提高课的质量,追求复习的最大效益

1、认真学习新课改的考试说明和考试纲要,严格执行课程计划,确保教学进度的严肃性、高三年级在明确学期教学计划的基础上,本学期以来经常进行备课组群众备课,教学案一体化,将长计划和短安排有机结合,既体现了学期教学的连贯性,又体现了阶段教学的灵活性。

2、准确定位复习难度,提高课堂复习的针对性。我们把临界生这个群体作为高考复习的主要对象,根据临界生的知识结构,潜力层次来设计课堂教学,不片面地追求"高,难,尖",而是在夯实基础的前提下,逐步提高潜力要求,从而突出重点,突破难点。

3、不断优化课堂结构,力促课堂质量的有效性。首先,针对复习课特点,明确复习思路,构建了二轮复习"四合一"的课堂模式:潜力训练+试卷讲评+整理消化+纠错巩固。潜力训练做到在一轮复习的基础上,排查出学生的考点缺陷,有针对性地进行强化训练;试卷讲评做到在错误率统计和错误原因分析的基础上进行讲评,讲评的对象明确定位为中转优学生,评讲效果的衡量标准就是看中转优学生有没有真正搞懂;整理消化首先确保各学科当堂消化的时间;错误率较高的题目在必须的时间长度内,以变形的形式进行纠错巩固训练,同时在周练中予以体现、

二、让学生切实做好题,发挥训练的最大功能

1、实行"下水上岸"制,提高练习质量。"下水"是为了"上岸",教师做题是为了选题。为此,本人对给学生做的题目自己先过一遍,加强对选题的工作,练习材料没有照搬现成资料,同时整个年段的题目是备课组群众研讨而成;要先改造,后使用,力求做到选题精当,贴合学情。

2、有效监控训练过程,确保训练效度、训练上个性重视训练的计划性,明确每周训练计划、认真统计分析,对于重点学生更是面批到位、指导学生进行自我纠错,并定期进行纠错训练、此外,对考试这一环节,严格考试流程,狠抓考风考纪,重视考试心理的调适,答题规范化的指导和应试技能的培养,努力消除非智力因素失分。及时认真地做好每次考试的质量分析,并使分析结果迅速,直接地指导后面的复习工作。

3、强化基础过关,实施分层推进、针对学生基础相对薄弱的现状,实施基础题过关的方法,在夯实基础的前提下,实验班适当提升训练难度,同时实行必做题和选做题的分档训练。这一举措对学生成绩的提高取得了良好的效果。

还有很多做得不够的地方,我必须持续谦虚谨慎,戒骄戒躁的作风,在今后的工作中扬长避短,不断进步,不辜负领导和家长们对我的信任,在来年再创佳绩。

高三数学考试分析总结 篇21

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

(3)定义与充要条件

数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高三数学考试分析总结 篇22

第一部分集合

(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;

(2)注意:讨论的时候不要遗忘了的情况。

第二部分函数与导数

1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2、函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、等);⑨导数法

3、复合函数的有关问题

(1)复合函数定义域求法:

①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出

②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:

①首先将原函数分解为基本函数:内函数与外函数;

②分别研究内、外函数在各自定义域内的单调性;

③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数的定义域是内函数的值域。

4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5、函数的奇偶性

⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;

⑵是奇函数;

⑶是偶函数;

⑷奇函数在原点有定义,则;

⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

1、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=—f(x),那么f(x)为奇函数;

2、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=f(x),那么f(x)为偶函数;

3、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;

4、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。

5、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

6、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称)。

高三数学考试分析总结 篇23

一、备考具体措施(成功之处):

1、充分利用理科数学备课组的人员和资源优势,进行集体备课,提高了复习备考质量和效率

高三文科组只有3位老师,负责6个班,准确把握复习方向、收集信息、准备讲义、练习和试题,及时改卷及分析等任务重,就要充分利用理科数学备课组的人员和资源优势,进行集体备课,提高备课质量,而文科数学备课组将更多精力集中在文理差别内容和文科学生特点的研究上。而且命制每次月考、模考试题也是文理备课组通力合作,精心打造文理两份姊妹题。

文理备课组统一做到资源共享,加强备课的交流,注重相互协作,强化集体备课,做好每单元的教学进度、内容、深度、广度统一;集体备课,教案基本统一,同时,根据各班的具体情况,适当进行调整,以适应学生的实际情况为标准,让学生学会并且掌握,不搞形式主义。教案应体现知识体系、思维方法、训练应用,以及渗透思想方法等,要有对重点难点的分析和解决方法。同时课后做好教学过程的反思总结。

2、认真研究了《考试说明》及近三年xx高考试题,较好地把握好高三数学复习备考的总方向

《考试说明》反映了命题的方向,认真研读考纲和说明,这样不但可以从宏观上掌握考试内容,做到复习不超纲;而且可以从微观上细心推敲对众多考点的不同要求,分清哪些内容只要一般理解,哪些内容应重点掌握,哪些知识又要求灵活运用和综合运用。复习中,要结合课本,对照《考试说明》把知识点从整体上再理一遍,既有横向串联,又有纵向并联。在复习中力争不要做无用功,有些内容就得敢于大胆的取舍,因为题永远是讲不完也是做不完的。

从近三年的xx高考来分析,我们预测:20xx年的总体要求保持平稳,20xx年xx高考文科数学试题难度应与20xx年高考试题难度基本一致或略难一点,试题的结构稳定的可能性也比较大。

从20xx年xx高考试题题看,我们备课组的备考总方向和难度都预测和控制得比较理想,下面对照分析我校20xx年校模和20xx年xx高考文科数学解答题情况:

题号

20xx校模

20xxxx高考

第16题

(三函数数)考察解三角形及三角函数的求值

(三函数数)考察三角函数的求值

第17题

(概率统计)考察频率、方差、古典概型及茎叶图

(概率统计)考察频率、古典概型

第18题

(立体几何)考察线面垂直、等积法求体积

(立体几何)考察线面平行、垂直、等积法求体积

第19题

(数列应用题)考察等差、等比数列求和

(数列)考察和式求通项、等差数列、数列求和

第20题

(解析几何)考察待定系数法法求曲线方程、定值问题及函数方程思想

(解析几何)考察考察待定系数法法求曲线方程、最值问题及函数方程思想

第21题

(函数导数)考察函数的单调性、存在性问题、证明不等式、分类讨论思想

(函数导数)考察察函数的单调性、函数最值、分类讨论思想

3、制定切实可行的计划,并且基本上按照计划安排进行复习,达到比较好的复习效果、

俗话:凡事不预而不立。切实可行的意思是计划要细致、具体、严格,一定要遵循计划的安排走,大家知道高三的复习,其实不止我们数学这一科,其他的学科也在内,都是时间紧任务重,要在有限的时间完成可以说是无限的复习内容,不精心作以安排,在复习中势必出现忙乱的现象,也会容易出现顾此失彼的后果。

在开学伊始,全组教师共同商讨就制定出一份时间上、具体到每章每节要用多少课时的不至于流于形式的严格计划,在计划中不但要考虑教学内容的多少,还要考虑在高考中占有的比重,更要顾及哪些内容是我们值得付出时间和精力的,等等一系列因素,使得大家在时间上有了紧迫感,使得我们的教学内容更加有效率,使得我们更能发挥积极性去充分地调动学生。

从第二学期的三次模拟(韶一模、广一模、韶二模)考试结果看,取得了取较好的复习效果,当然最终还是要经过高考结果的'检验。

附:高三数学复习分四个阶段的时间表:

第一阶段:高二期中后到3月10日前完成第一轮复习:系统复习(原计划上学期末结束)

第二阶段:3月10日到5月15日完成二轮复习:专题复习。

第三阶段:5月15日到5月底完成三轮复习:查漏补缺与模拟题训练;

第四阶段:6月1号到6号,学生自己复习与调整阶段。

4、注重数学学科的思想渗透,强化能力的培养、给学生科学合理适于接受的数学学习建议。

在复习中,加强基础知识的巩固和提高,加强各知识板块间的联系和综合,加强通性通法的总结和运用,重视教材,狠抓基础是根本;立足中低档,降低重心是策略;过程中发展能力,提高素质是核心。记得在开学初的教研活动中,我们数学的所有老师展开了对各年高考试题的研讨,大家的一致意见就是狠抓基础,立足中档题。在复习过程中我们经常提醒学生多回顾课本、做好学习笔记和纠错本,浓缩所学知识,熟练掌握解题方法,加快解题速度,缩短遗忘周期,达到复习巩固提高的效果,以提高知识与能力的综合性、应用性、创新性为重点。

在复习内容的安排上我们实行代数与几何、较易板块与较难板块交替进行复习,引导学生立足课本,浏览以前的课堂笔记,激活所有数学知识点,这样做既巩固了基础,又给尖子生突破综合问题留出了时间,树立了备战高考的信心、

在集体教研选择教学题目时尤其注重:(1)强调知识的综合性及不同章节的内在联系;(2)不断渗透重要的数学思想与方法。如:函数与方程的思想方法;数形结合的思想方法;分类讨论的思想方法;转化与划归的思想方法;运动与变换的思想方法等不断在复习过程中渗透;(3)强化数学思维训练,体现多一点想,少一点算或不急于算。也就是我们曾经说的:磨刀不费砍材功、(4)反思解答问题时的开窍点,优化解题时思维线路,熟练解答问题的通性通法,强化解答综合性数学高考试题的一般思维模式,就能不断提高综合分析问题和解决问题的能力、

5、精编题目,编写好补充讲义、周练、连堂训练(限时训练)、加强检查落实及做好各次月考模考的考试分析。

三位老师既合作、又分工明确,我负责参考在理科数学补充讲义的基础,修改和编写文科数学补充讲义及命制各次周考、月考、模考试题,刘昕负责出好每周的连堂训练和限时训练,杜秋出好每周的周练及做好练习及考试题检对及送印工作。连堂训练(限时训练)让学生独立完成,提高运算能力,在第二节课讲评,周练下周一收,一般安排在周二讲评。周六考、月考或模考周六,加强横向与纵向对比;及时做好统计分析。

以重点知识再复习为主,高三这一年的复习备考中我们一直采取段段清,紧紧跟的原则,所谓段段清就是复习完一个章节即时考查,力求不留知识死角,使得基础复习更完备,知识脉络更清晰,所谓紧紧跟就是复习完这一章再连同前面复习的所有的内容一起再考一次,做好滚动练习与周连结合,及时的巩固缩短了遗忘周期、

在二轮复习过程中,我们基本采用了以学生为主体的练讲结合,把所有的题目都让学生独立的完成,然后学生讲评、老师点评、点拨。达到精讲精练的目的。也使学生不在题海中泛滥,而是在规律和方法中寻求触类旁通,举一反三,游刃有余的学习境界、

6、落实学校“培优推中提弱”六字方针,加强对尖子生和临界生的培养,做好学生心理辅导。

尖子生的培养文理合为一个班(文10人,理30人),按计划每周上课,充分调动学生积极性和主动性,营造学习和研讨学风。临界生成绩是否能提高直接影响高考的成败,临界生的培养不是一朝一夕的事儿,尤其是文科,很多学生都是因为数学不好才选择了文科,甚至很多尖子生在数学上都存在缺腿现象,这就造成班级没有学习数学的氛围,没有带头人,下大力气培养尖子生,因为只要有一人能学会就会一帮两,两帮三从而带动一批人来学数学。我们的具体做法是:课堂上重点抓基础讲教材,尤其是书上例题书后习题,高考很多知识的考察都是源于课本而高于课本,只有打好基础才能做好提高;课下每天坚持找目标生谈心,多鼓励,做好学生的心理辅导,对于作业必须面批,这方面得到了班主任的大力支持,这不仅提高了学生学习数学的积极性,也培养了学生独立思考和解决问题的能力,同时提高他们的数学成绩。年级将艺体生组成一个班,从他们回来开始,就安排三位老师(谢谢理科备课组的大力支援!)坚持上课到6月5日,取得较好的效果。

二、备考不足之处

1、第一轮复习没有完全按计划结束,拖得时间略长了些,导致二、三轮复习时间略紧,稍微被动了些。

2、由于我本人自分文理科后,没有担任文科数学教学的经验,在复习的难度把握上还是略拔高了些。

3、数列内容的复习,受xx高考前几年的影响,在难度上把握得太难了,虽然近两年的难度减小的呼声,但复习仍不敢降得太多。不过这点还值得商讨。

三、几点备考建议:

1、制定切实可行的计划,并且上按照计划安排进行复习,保证第一轮复习既扎实进行,又完全按计划结束。

2、认真研究了《考试说明》及近三年xx高考试题,较好地把握好高三数学复习备考的总方向,尤其是把握好文科数学特点,控制复习的难度和深度,这是高考备考指导方针。

3、认真加强周练、连堂训练(限时训练)的加强检查落实及做好各次月考模的考试分析,

这是高考成功的保证。

4、落实学校“培优推中提弱”六字方针,加强对尖子生和临界生的培养,做好学生方法指导和心理辅导,这是高考的突破点和增长点。

高三数学考试分析总结 篇24

符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。

轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。

【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤

⒈建立适当的坐标系,设出动点M的坐标;

⒉写出点M的集合;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

直译法:求动点轨迹方程的一般步骤

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点P(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高三数学考试分析总结 篇25

这学期我担任高三年理科班(3)(4)两班的数学教学工作,这是我工作以来第一次任教高三年级,没有经验,在这一半学期的时间里,我深知肩上的责任,一直以来我努力的工作经常向老教师学习。新的高考形势下,高三数学怎么去教,学生怎么去学?工作起来感到压力很大。现对本学期教学工作总结如下:

一、研读考纲,梳理知识

研究《考试说明》中对考试的性质、考试的要求、考试的内容、考试形式及试卷结构各方面的要求,并以此为复习备考的依据,也为复习的指南,做到复习不超纲,同时,从精神实质上领悟《考试说明》,具体说来是:细心推敲对考试内容三个不同层次的要求。准确掌握哪些内容是了解,哪些是理解和掌握,哪些是灵活和综合运用。这样就能明了知识系统的全貌,这些设计目标由选择填空题来完成。以它的目的来看,选择填空题的难度不应该大,一张卷有1-2道难度大的题就足够了。而理科这是很重要的一部分,所以复习时应用花大的精力去抓选择填空题,实际上,实践告诉我们,难的选择填空题是押不上的,遇到时只能依靠学生自己的数学能力。选择填空题往往有一些技巧解法,如排除法,特值法,代入数值计算,从极端情况出发,等等,我们除了在平时的训练,还作了选择填空题的专题训练以提高学生的解题技巧。

二、立足课本夯实基础

高考复习,立足课本,夯实基础.复习时要求全面周到,注重教材的科学体系,打好"双基",准确掌握考试内容,做到复习不超纲,不做无用功,使复习更有针对性,细心推敲对高考内容四个不同层次的要求,准确掌握那些内容是要求了解的,那些内容是要求理解的,那些内容是要求掌握的,那些内容是要求灵活运用和综合运用的;细心推敲要考查的数学思想和数学方法;在复习基础知识的同时要注重能力的培养,要充分体现学生的主体地位,将学生的学习积极性充分调动起来,教学过程中,不仅要展现教师的分析思维,还要充分展现学生的思考思维,把教学活动体现为思维活动;同时还适当增加难度,教学起点总体要高,注重提优补差,新高考将更加注重对学生能力的考查,适当增加教学的难度,为更多优秀的学生脱颖而出提供了更多的机会和空间,有利于优秀的学生最大限度发挥自己的潜能,取得更好的成绩;对于差生充分利用辅导课的时间帮助他们分析学习上存在的问题,解决他们学习上的困难,培养他们学习数学的兴趣,激励他们勇于迎接挑战,不断挖掘潜力,最大限度提高他们的数学成绩.

三、优化练习提高练习的有效性

知识的巩固,技能的熟练,能力的提高都需要通过适当而有效的.练习才能实现;首先,练习题要精编,题量要适度,注意题目的典型性和层次性,以适应不同层次的学生;对练习要全批全改,做好学生的错题统计,对于错的较多的题目,找出错的原因.练习的讲评是高三数学教学的一个重要的环节,为了最大限度地发挥课堂教学的效益,课堂的讲评要科学化,要注重教学的效果,不该讲的就不讲,该点拨的要点拨,该讲的内容一定要讲透;对于典型问题,要让学生板演,充分暴露学生的思维过程,加强教学的针对性.多做限时练习,有效的提高了学生的应试能力.

四、不同学生不同要求

高考采用新的模式,学生选修的科类不同,因此学生的整体情况不一样,同一班级的学生,层次差别也较大,给教学带来很大的难度,这就要求每位教师要从整体上把握教学目标,又要根据各班实际情况制定出具体要求,对不同层次的学生,应区别对待,这样,对课前预习、课堂训练、课后作业的布置和课后的辅导的内容也就因人而异,对不同班级、不同层次的学生提出不同的要求。在课堂提问上也要分层次,基础题一般由学生来做,以增强他们的信心,提高学习的兴趣,对能力较强的学生要把知识点扩展开来,充分挖掘他们的潜力,提高他们逻辑思维能力和分析问题、解决问题的能力。课后作业的布置,既有全体学生的必做题也有针对较强能力的学生的思考题,教师在课后对学生的辅导的内容也因人而异,让所有的学生都能有所收获,使不同层次的学生的能力都能得到提高。盖率应该尽量大,这些设计目标由选择填空题来完成。以它的目的来看,选择填空题的难度不应该大,一张卷有1-2道难度大的题就足够了。而理科这是很重要的一部分,所以复习时应用花大的精力去抓选择填空题,实际上,实践告诉我们,难的选择填空题是押不上的,遇到时只能依靠学生自己的数学能力。选择填空题往往有一些技巧解法,如排除法,特值法,代入数值计算,从极端情况出发,等等,我们除了在平时的训练,还作了选择填空题的专题训练以提高学生的解题技巧。

五、关注全体学生。

学好数学,除了智力因素以外,还有非智力因素特别是心理方面,一些同学害怕学不好数学,或者以前数学成绩一直不好,现在也一定学不好等,我采用了个别交流学习方法、学习心得等,告诉学生只要做好老师上课讲解的,课后加强领会、总结,一定会有进步的,不断关怀、帮助、指导,学生积极性提高,问的问题也多了起来,学习成绩也渐渐提高了。

高三数学考试分析总结 篇26

不等式的解集:

①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

不等式的判定:

①常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

②在不等式“a>b”或“a

③不等号的开口所对的数较大,不等号的尖头所对的数较小;

④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。

高三数学考试分析总结 篇27

1.不等式的定义

在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

2.比较两个实数的大小

两个实数的大小是用实数的运算性质来定义的,

有a-b>0?;a-b=0?;a-b0,则有>1?;=1?;b?;

(2)传递性:a>b,b>c?;

(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

(5)可乘方:a>b>0?(n∈N,n≥2);

(6)可开方:a>b>0?(n∈N,n≥2).

复习指导

1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

3.“两条常用性质”

(1)倒数性质:①a>b,ab>0?b>0,0;④0

(2)若a>b>0,m>0,则

①真分数的性质:(b-m>0);

高三数学考试分析总结 篇28

高三数学每轮复习要领

一、高三数学复习,大体可分四个阶段,每一个阶段的复习方法与侧重点都各不相同,要求也层层加深,因此,同学们在每一个阶段都应该有不同的复习方案,采用不同的方法和策略。

1.第一阶段,即第一轮复习,也称“知识篇”,大致就是高三第一学期。在这一阶段,老师将带领同学们重温高一、高二所学课程,但这绝不只是以前所学知识的简单重复,而是站在更高的角度,对旧知识产生全新认识的重要过程。因为在高一、高二时,老师是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,你学的往往时零碎的、散乱的知识点,而在第一轮复习时,老师的主线索是知识的纵向联系与横向联系,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,侧重点在于各个知识点之间的融会贯通。所以大家在复习过程中应做到: ①立足课本,迅速激活已学过的各个知识点。(建议大家在高三前的一个暑假里通读高一、高二教材) ②注意所做题目使用知识点覆盖范围的变化,有意识地思考、研究这些知识点在课本中所处的地位和相互之间的联系。注意到老师选题的综合性在不断地加强。 ③明了课本从前到后的知识结构,将整个知识体系框架化、网络化。能提炼解题所用知识点,并说出其出处。 ④经常将使用最多的知识点总结起来,研究重点知识所在章节,并了解各章节在课本中的地位和作用。

2.第二轮复习,通常称为“方法篇”。大约从第二学期开学到四月中旬结束。在这一阶段,老师将以方法、技巧为主线,主要研究数学思想方法。老师的复习,不再重视知识结构的先后次序,而是以提高同学们解决问题、分析问题的能力为目的,提出、分析、解决问题的思路用“配方法、待定系数法、换元法、数形结合、分类讨论”等方法解决一类问题、一系列问题。同学们应做到: ①主动将有关知识进行必要的拆分、加工重组。找出某个知识点会在一系列题目中出现,某种方法可以解决一类问题。 ②分析题目时,由原来的注重知识点,渐渐地向探寻解题的思路、方法转变。 ③从现在开始,解题一定要非常规范,俗语说:“不怕难题不得分,就怕每题都扣分”,所以大家务必将解题过程写得层次分明,结构完整。 ④适当选做各地模拟试卷和以往高考题,逐渐弄清高考考查的范围和重点。

3.第三轮复习,大约一个月的时间,也称为“策略篇”。老师主要讲述“选择题的解发、填空题的解法、应用题的解法、探究性命题的解法、综合题的解法、创新性题的解法”,教给同学们一些解题的特殊方法,特殊技巧,以提高同学们的解题速度和应对策略为目的。同学们应做到: ①解题时,会从多种方法中选择最省时、最省事的方法,力求多方位,多角度的思考问题,逐渐适应高考对“减缩思维”的要求。 ②注意自己的解题速度,审题要慢,思维要全,下笔要准,答题要快。 ③养成在解题过程中分析命题者的意图的习惯,思考命题者是怎样将考查的知识点有机的结合起来的,有那些思想方法被复合在其中,对命题者想要考我什么,我应该会什么,做到心知肚明。

4.最后,就是冲刺阶段,也称为“备考篇”。在这一阶段,老师会将复习的主动权交给你自己。以前,学习的重点、难点、方法、思路都是以老师的意志为主线,但是,现在你要直接、主动的.研读《考试说明》,研究近年来的高考试题,掌握高考信息、命题动向,并做到: ①检索自己的知识系统,紧抓薄弱点,并针对性地做专门的训练和突击措施(可请老师专门为你拎一拎);锁定重中之重,掌握最重要的知识到炉火纯青的地步。 ②抓思维易错点,注重典型题型。 ③浏览自己以前做过的习题、试卷,回忆自己学习相关知识的历程,做好“再”纠错工作。 ④博览群书,博闻强记,使自己见多识广,注意那些背景新、方法新,知识具有代表性的问题。 ⑤不做难题、偏题、怪题,保持情绪稳定,充满信心,准备应考。

二、高三数学复习中的几个注意点

1.复习资料要精,不可超过两套,使用过程中,始终注重其系统性。千万不要贪多,资料多了,不但使自己身陷题海,不能自拔,而且会因为你的顾此失彼,而使知识体系得不到延续。

2.有的同学漠视自己作业和考试中出现的错误,将他们简单的归结为粗心大意。这是很严重的错误想法,我们的错误都有其必然性,一定要究根问底,找出真正的原因,及时改正,并记住这样的教训。

3.千万不要以为“高考以能力立意”,就是要去钻难题、偏题、怪题。这里的能力是指:思维能力,对现实生活的观察分析力,创造性的想象能力,探究性实验动手能力,理解运用实际问题的能力,分析和解决问题的探究创新能力,处理、运用信息的能力,新材料、新情景、新问题应变理解能力,其重点是概念观点形成和规律的认识过程,它往往蕴藏在最简单、最基础的题目活事实之中。不是钻牛角尖能钻出来的能力。

4.合理看待来自老师和社会各界的猜题、压题信息,不可迷信。因为,他们也不是神,我们上了考场只能凭自己的实力,凭自己的智慧去打拼,所以,我们应该踏踏实实、认认真真做好复习应考工作。

高中数学学习方法

1一本书

就是教科书,这是基础的基础,但是被中等生最忽视的。笔者高中时,先看教科书再做题,所以往往同学做到第5题,我才刚开始,但当我做了20题时,反过来发现同学做到第17题,这就是磨刀不误砍柴工。最后不仅省时,而且比同学多巩固了书本知识,然后从书本原理到题目及从题目到原理走了一个来回,培养了以理论解决实际问题的能力,提高了以不变应万变的能力。一句话,省时又高效。为摆脱题海打下了基础。

2两方法

1)找到已知与求解的“桥梁”。主要针对中等题及难题,利用已知,推一步或几步,完成转化,从求解往后推几步,看看还缺什么,再去回忆脑袋里的知识点及解过的经典题,把已知与求解的差距补上,这个就是“桥梁”原理。

2)有些题按上述方法还遇到困难,可能需要另辟蹊径,如从定义出发或需要再审视已知条件,可能还未用尽已知条件或有些暗含的已知条件未挖掘出来。

3三部曲:

1)先看教科书,真正搞懂课本例题,并做课后练习(虽然看上去很简单,但是实质上就是要你检查自己是否真的掌握这些基本知识点.),

2)利用历年高考真题, 这些题很有价值,先掩着答案,根据你之前课本学的基础内容,尝试自己亲自动手做一下,再对答案,明白其原理.,真正弄懂它,看看能否举一反三,可问老师及同学,也可请家教,最后达到触类旁通。

3)同步练习,必须紧跟课程,不能赖下来的,一步一个脚印去做.

数学知识点较多,容易忘记,但以上的步骤你都能做到的话,那么就不那么容易遗忘,即使忘记,你也可以翻阅以前的内容重新巩固一遍.

4四层次

1)

基本知识点。含概念、定义、定理、公式等,这是基础,这个不过关,其他免谈。笔者平时先看教科书,就是这个道理。--这部分,虽然重要,但笔者辅导不作重点,只是检查与提醒,因为可自学及问自己老师同学。会这个的人太容易找到了。

2)

数学思想与数学技能。数学思想如方程函数思想、数形结合思想、对称思想、分类讨论思想,化归思想;数学技能如配方、待定系数法等。笔者由于这方面强,故多年不做题或见到陌生题均不慌,因为这些思想能力是深入骨髓的。

3)

数学模型与中间结论。数学模型就是具体题目的解题套路,中间结论可使学生减少解题步骤,加快解题速度,减少出错机会。这些有了2数学思想与数学技能,就能自己推导出来,但要注意总结与积累。

4)

特殊解题技巧。这个要求以上3方面都较强,聪明加灵感,平时善于总结与归纳,看透事物本源,熟能生巧,触类旁通。故对中等生不作过高要求,所谓可遇而不可求。笔者对高考实考试卷的选择与填空,特别是选择,有相当部分,有的试卷甚至一半以上可在题读完后,几秒得出正确答案。凭的就是这个本事。

高三数学考试分析总结 篇29

三角函数。

注意归一公式、诱导公式的正确性。

数列题。

1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的`式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

3、证明不等式时,有时构造函数,利用函数单调性很简单

立体几何题。

1、证明线面位置关系,一般不需要去建系,更简单;

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;

3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。

概率问题。

1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

2、搞清是什么概率模型,套用哪个公式;

3、记准均值、方差、标准差公式;

4、求概率时,正难则反(根据p1+p2+……+pn=1);

5、注意计数时利用列举、树图等基本方法;

6、注意放回抽样,不放回抽样;

正弦、余弦典型例题。

1、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

2、已知α为锐角,且,则α的度数是A、30°B、45°C、60°D、90°

3、在△ABC中,若,∠A,∠B为锐角,则∠C的度数是A、75°B、90°C、105°D、120°

4、若∠A为锐角,且,则A=A、15°B、30°C、45°D、60°

5、在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点,EF⊥BC,垂足为F,求sin∠EBF的值。

正弦、余弦解题诀窍。

1、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理。

2、已知三边,或两边及其夹角用余弦定理

3、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。

高三数学考试分析总结 篇30

我作为高三数学备课组组长,今天在这里代表全体备课组教师向大家汇报本学期在教学中的一些做法和体会,和大家一起进行研讨。

一、发扬优良传统,坚持三个统一。

统一观念:针对新高考试题与新高考评价体系更加突出“立德树人”、“从学生未来发展出发,力争改变学生的学习方式和人人都能获得有价值的、必要的数学应用”的教育理念。严格按?新高考评价体系与新课程标准?的要求,遵循“考察基础知识的同时,注重考察能力”的原则,确立以能力立意命题的指导思想,融知识、能力与素质于一体,全面检测考生的数学素养和数学应用能力。半年来,我们一轮复习的教学方针是:以学生为主体,注重基础教学,加强能力培养。在此观念下,结合“问题驱动式教学模式”引领,针对不同内容,采用不同的教学方式和教学方法。

统一目标:本学期,我们的教学目标是“夯实基础,注重基础知识和基本方法的教学”;而第二学期,我们的教学目标是“注重数学思想方法的渗透,提高学生综合解题能力”。只有目标明确,措施才能得当,在不同的阶段,才会有针对性的选择教学方法,设计不同的教学学案,突出重点,取得较好的教学效果。

统一主线:高三我们的教学是以“问题驱动”为教学模式,以数学组选的《高考大一轮》为主线。这套导学案是我们数学组经过集体研究与探讨选的,针对新的高考评价体系,例题与习题都是精编题。它贯穿了各章节的主干知识和精编题目,比较适合我校学生的层次和特点,所以以它为复习主线,使复习的重点、难点一致,复习的知识结构一致。在统一备课的基础上,进一步阐明各个章节的`编写意图,每一道题所要达到的目的,以求得在理解上的一致。

以上三个统一,是我们备课组打好整体仗的重要前提。

二、关注教改,注重科研,改进数学教学方式。

随着对“新课标”的学习和教学改革的不断深入,迫切地要求我们的教学理念、教学方式和教学方法实行质的改变。高三阶段,重点结合教学改革,深刻研究新课程标准,不断改进和制定复习的策略和方法,提出新的教学设想,大胆尝试,以公开课和每周示范课的形式进行实践。并且每一次课都要集体备课,统一思想,统一方案,但不拘泥于统一的教学方式。课后总是认真总结,写出教学论文和心得。这一活动方式,得到领导认可与表扬。

三、群策群力,取长补短,团结协作。

备课组是一个群体,群体的工作自然离不开每一个个体。高三的复习工作极为繁重,一个人的力量是绝对不可能完成的。我们备课组共有17位老师,各有所长;我们敬业爱岗,乐于奉献。正是这种精神,团结在了一起,大家心往一处想,劲往一处使,群策群力,取长补短,团结协作。我们今天取得的成绩,正是大家的努力和智慧的结晶。

四、轮次复习,滚动检测,月考激励,相互穿插,效果斐然。

我们采用的是三轮复习法;一轮到一月底结束,注重章节复习,重基础知识、基本方法基本技能的复习与培养。二轮三月到五月底,注重专题复习,以提高综合解决问题的能力,使知识系统化、网络化。三轮复习利用一个月的时间来轮考,以提高学生的应考能力。每周末都进行滚动检测,每周都有两次定时练,以防止知识遗忘。通过月考,为学生摇旗呐喊,鼓舞士气。通过这种复习法,稳扎稳打,效果斐然。

以上是我们高三数学备课组的工作总结和点滴体会,希望能给今后的工作提供帮助,仅供大家参考,不当之处请大家指正。

35 3926133
");