二次根式知识点总结优秀5篇

网友 分享 时间:

【导言】此例“二次根式知识点总结优秀5篇”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

二次根式知识点【第一篇】

中考数学二次根式复习注意问题

1.首先考虑被开方数为非负数,其次还要考虑其他限制条件,这样就转化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.

2、利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简。

二次根式的基础知识

1.最简二次根式

被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式。

2. 同类二次根式

化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式。

注意问题归纳:

最简二次根式的判断方法:

1.最简二次根式必须同时满足如下条件:

(1)被开方数的因数是整数,因式是整式(分母中不应含有根号);

(2)被开方数中不含开方开得尽的因数或因式,即被开方数的因数或因式的指数都为1.

2.判断同类二次根式:先把所有的二次根式化成最简二次根式;再根据被开方数是否相同来加以判断。要注意同类二次根式与根号外的因式无关。

二次根式的相关概念

(1)平方根和算术平方根。一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,记为,我们规定0的算术平方根是0,即。如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫二次方根),记为±。一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。求一个数a的平方根的运算,叫做开平方。

(2)立方根。如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根。正数的立方根是正数;0的立方根是0;负数的立方根是负数。

二次根式数学教案【第二篇】

课题:二次根式

教学目标 1、知识与技能

理解a(a≥0)是一个非负数, (a≥0)

2、过程与方法

(1)数学思考:学会独立思考、体会数学的体验归纳、类比的思想

方法

(2) 问题解决:能够利用性质进行二次根式的化简计算,能够互助

交流合作,分析问题,总结反思

3、情感、态度与价值观

体验成功的乐趣,锻炼克服困难的意志,培养严谨

求实的科学态度

教学重难点 教学重点:二次根式的概念

教学难点:二次根式中根号下必须为非负数

教学过程

一、课前回顾

(2分钟)

学生与老师共同回顾上节课所学内容,温故而知新。 什么是二次根式?

二次根式中字母的取值范围:

①被开方数大于等于零;

②分母中有字母时,要保证分母不为零。

③多个条件组合时,应用不等式组求解

一、情境引入(3分钟)

由生活中的实例引入投影的概念,引起学生的学习兴趣

已知下列各正方形的面积,求其边长。

二、探究1(10分钟)

练习1:

计算下列各式:

三、探究2(10分钟)

可以发现它们有如下规律:

一般的,二次根式有下列性质:

练习2:

典型例题 例1:计算:

例2:计算:

达标测试(5分钟)

课堂测试,检验学习结果

1、判断题

2、若 ,则x的取值范围为 ( A )

(A) x≤1 (B) x≥1

(C) 0≤x≤1 (D)一切有理数

3、计算

4、化简

5、已知a,b,c为△ABC的三边长,化简:

这一类问题注意把二次根式的运算搭载在三角形三边之间的关系这个知识点上,特别要应用好。

应用提高(5分钟)

能力提升,学有余力的同学可以仔细研究 如图,P是直角坐标系中一点。

(1)用二次根式表示点P到原点O的距离;

(2)如果 求点P到原点O的距离

体验收获 今天我们学习了哪些知识

二次根式的两条性质。

布置作业 教材8页习题第3、4题。

九年级数学二次根式知识点【第三篇】

九年级数学二次根式知识点

① 二次根式的概念:

一般地,形如 √a (a≥0)的式子叫作二次根式,其中“ √ ” 称为二次根号,a 称为被开方数。

例如,√2 ,√(x^2+1) ,√(x-1) (x≥1) 等都是二次根式 。

② 二次根式的性质:

当 a ≥ 0 时,√a 表示 a 的算术平方根,所以√a 是非负数 ( √a ≥ 0),即对于式子 √a 来说,不但 a ≥ 0,而且 √a ≥ 0,因此可以说 √a 具有双重非负性 。

③ 最简二次根式:

1、被开方数中不含有分母 ;2、被开方数中不含有能开得尽方的因数和因式 。

④ 积的算术平方根的性质:

积的算术平方根,等于积中各因式的算术平方根的积。

⑤ 商的算术平方根的性质:

商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。

注:对于商的算术平方根,最后结果一定要进行分母有理化。

⑥ 分母有理化:

化去分母中根号的变形叫作分母有理化,分母有理化的方法是根据分数的基本性质,将分子和分母分别乘分母的有理化因式(两个含有二次根式的代数式相乘,如果它们的积不含二次根式,就说这两个代数式互为有理化因式)化去分母中的根号。

⑦ 化成最简二次根式的一般方法:

1、将被开方数中能开得尽方的因数或因式进行开方;

2、若被开方数含分母,先根据商的算术平方根的性质对二次根式进行变形,再根据分母有理化的方法化简二次根式;

3、若分母中含二次根式,根据分母有理化的方法化简二次根式 。

判断一个二次根式是否为最简二次根式,要紧扣最简二次根式的特点:

(1)被开方数中不含分母;

(2)被开方数中不含能开得尽方的因数或因式;

(3)若被开方数是和(或差)的形式,则先把被开方数写成积的形式,再判断,若无法写成积(或一个数)的形式,则为最简二次根式 。

⑧ 二次根式的加减:

(1)先把每个二次根式都化成最简二次根式;

(2)把被开方数相同的二次根式合并,注意合并时只把“系数”相加减,根号部分不动,不是同类二次根式的不能合并

初三数学重要知识点归纳

(1)圆的对称性

1、圆的轴对称性

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2、圆的中心对称性

圆是以圆心为对称中心的中心对称图形。

(2)基本函数的概念及性质

1.函数y=-8x是一次函数。

2.函数y=4x+1是正比例函数。

3.函数是反比例函数。

4.抛物线y=-3(x-2)2-5的开口向下。

5.抛物线y=4(x-3)2-10的对称轴是x=3.

6.抛物线的顶点坐标是(1,2)。

7.反比例函数的图象在第一、三象限。

初中数学有理数知识点

正数和负数

①把0以外的数分为正数和负数。0是正数与负数的分界。

②负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数

有理数

有理数

①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

②所有正整数组成正整数集合,所有负整数组成负整数集合。正整数,0,负整数统称整数。

数轴

①具有原点,正方向,单位长度的直线叫数轴。

相反数

①只有符号不同的数叫相反数。

②0的相反数是0 正数的相反数是负数 负数的相反数是正数

绝对值

①绝对值 |a|

②性质:正数的绝对值是它的本身

负数的绝对值的它的相反数

0的绝对值的0

数的大小比较

①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

②正数大于0,0大于负数,正数大于负数。两个负数,绝对值大的反而小。

有理数的加减法

有理数的加法

①同号两数相加,取相同的符号,并把绝对值相加。

②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

③一个数同0相加,仍得这个数。

④加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(a+b)+c=(a+c)+b

有理数的减法

①减去一个数,等于加这个数的相反数。a-b=a+(-b)

有理数的乘除法

有理数的乘法

①两数相乘,同号得正,异号的负,并把绝对值相乘。

②任何数同0相乘,都得0。

③乘积是1的两个数互为倒数。

④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。

⑤乘法交换律:两个数相乘,交换因数的位置,积相等。ab=ba

⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=(ac)b

⑦乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac

有理数的除法

①除以一个不等0的数,等于乘以这个数的倒数。

②两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0

③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。

有理数的乘方

乘方

①求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a叫做底数,n 叫做指数。

②负数的奇次幂是负数,负数的偶次幂的正数。

③正数的任何次幂都是正数,0的任何正整数次幂都是0。

④做有理数的混合运算时,应注意以下运算顺序:

1.先乘方,再乘除,最后加减;

2.同级运算,从左到右进行;

3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

科学记数法。

①把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

近似数

①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数。

②近似数与准确数的接近程度,可以用精确度表示。

③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。

二次根式教案【第四篇】

目 标

1. 熟练地运用二次根式的性质化简二次根式;

2. 会运用二次根式解决简单的实际问题;

3. 进一步体验二次根式及其运算的实际意义和应用价值。

教学设想

本节课的重点是:二次根式及其运算的实际应用;难点是:例7涉及多方面的知识和综合运用,思路比较复杂。

教 学 程序 与 策 略

一、预习检测:

1.解决节前问题:

如图,架在消防车上的云梯AB长为15m,AD:BD=1 :,云梯底部离地面的距离BC为2m。你能求出云梯的顶端离地面的距离AE吗?

归纳:

在日常生活和生产实际中,我们在解决一 些问题,尤其是涉及直角三角形边长计算的问题时经常用到二次根式及其运算。

二、合作交流:

1、:如图,扶梯AB的坡比(BE与AE的长度之比)为1:,滑梯CD的坡比为1:,AE= 米,BC= CD。一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程(结果要求先化简,再取近似值,精确到米)

让学生有充分的时间阅读问题,并结合图形分析问题:(1)所求的路程实际上是哪些线段的和?哪些线段的长是已知的?哪些线段的长是未知的?它们之间有什么关系?(2)列出的算式中有哪些运算?能化简吗?

注意解题格式

教 学 程 序 与 策 略

三、巩固练习:

完成课本P17、1,组长检查反馈;

四、拓展提高:

1:如图是一张等腰三角形彩色纸,AC=BC=40cm,将斜边上的高CD四等分,然后裁出3张宽度相等的长方形纸条。(1)分别求出3张长方形纸条的长度。(2)若用这些纸条为一幅正方形美术作品镶边(纸条不重叠),如右图,正方形美术作品的面积最大不能超过多少cm。

师生共同分析解题思路,请学生写出解题过程。

五、课堂小结:

1.谈一谈:本节课你有什么收获?

2.运用二次根式解决简单的实际问题时应注意的的问题

六、堂堂清

1: 作业本(2)

2:课本P17页:第4、5题选做。

二次根式教案【第五篇】

1.请同学们回忆(≥0,b≥0)是如何得到的?

2.学生观察下面的例子,并计算:

由学生总结上面两个式的关系得:

类似地,请每个同学再举一个例子,然后由这些特殊的例子,得出:

(≥0,b0)

使学生回忆起二次根式乘法的运算方法的推导过程。

类似地,请每个同学再举一个例子,

请学生们思考为什么b的取值范围变小了?

与学生一起写清解题过程,提醒他们被开方式一定要开尽。

对比二次根式的乘法推导出除法的运算方法

增强学生的自信心,并从一开始就使他们参与到推导过程中来。

对学生进一步强化被开方数的取值范围,以及分母不能为零。

强化学生的解题格式一定要标准。

教学过程设计

问题与情境师生行为设计意图

活动二自我检测

活动三挑战逆向思维

把反过来,就得到

(≥0,b0)

利用它就可以进行二次根式的化简。

例2化简:

(1)

(2)(b≥0).

解:(1)(2)练习2化简:

(1)(2)活动四谈谈你的收获

1.商的算术平方根的性质(注意公式成立的条件).

2.会利用商的算术平方根的性质进行简单的二次根式的化简.

找四名学生上黑板板演,其余学生在练习本上计算,然后再找学生指出不足。

二次根式的乘法公式可以逆用,那除法公式可以逆用吗?

找学生口述解题过程,教师将过程写在黑板上。

请学生仿照例题自己解决这两道小题,组长检查本组的学习情况。

请学生自己谈收获,并总结本节课的主要内容。

为了更快地发现学生的错误之处,以便纠正。

此处进行简单处理是因为有二次根式的乘法公式的逆用作基础理解并不难。

让学困生在自己做题时有一个参照。

充分发挥组长的作用,尽可能在课堂上将问题解决。

35 300364
");