学校管理的数据分析师工作总结范文大全【优质8篇】
【写作参考】一篇好的范文往往能让您的写作事半功倍,下面是由阿拉题库网友为您分享的“学校管理的数据分析师工作总结范文大全【优质8篇】”优质范例,供您写作参考之用,轻松写作,远离加班熬夜,希望以下内容对您有所帮助,喜欢就下载支持吧!
学校管理的数据分析师工作总结【第一篇】
转眼间,20xx年已悄然走来,20xx年,我们以“创先争优”、搞好优质服务、提供良好素质员工为己任,以提高客运服务质量为宗旨,依据年度站务员培训计划,有步骤、分阶段的开展了员工培训工作,在公司领导的关心和帮助下,在全体员工的不懈努力下,圆满完成了全年的培训任务,为企业的持续发展提供必要的人力、智力的支持,同时也为20xx年度培训工作的持续开展奠定了良好的基础,为了总结经验,寻找差距,现将年度培训工作总结如下:
20xx年综合培训员工(站务员)5期以上,共八十多人次参加,每届培训合格率达90%以上,基本达到了目标要求。
1、国家及云南省有关道路旅客法律法规。
2、集团公司客运管理制度、规定和相关要求。
3、集团公司劳动管理制度。
4、员工岗位职责、操作规范。
5、服务礼仪等。
1、培训工作考核少,造成培训“参加与不参加一个样,学好与学孬一个样”的消极局面,导致培训工作的被动性。
2、培训形式缺乏创新,只是一味的'采取“上面讲,下面听”形式,呆板、枯燥,提不起员工的兴趣,导致员工注意力不集中,影响了培训的效果。
3、培训制度有待建立健全。
4、培训资料欠缺,有待丰富。
5、内部授课技巧普遍不高,有待提高,制作课件水平不足,自主研发课程能力有所欠缺,所以,以上需要改善。
认真进行总结是一个不断学习和提高的过程,只有在实际工作的过程中不断总结,通过总结寻找工作中的规律,从而培养和提高工作效率及完成工作能力。以上是我对培训工作的总结,敬请领导批评指正。
给各位朋友兄弟拜个早年了,祝各位身体健康,心想事成,万事如意!
学校管理的数据分析师工作总结【第二篇】
虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。
2、数据查询员/处理员:数据处理没问题,缺乏数据解读能力。
这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并且可以通过监控系统或者原始的数据,处理得到这些数据。统计学的方法,这批人还是很精通的,统计学的工具,他们也是用起来得心应手,你让他们做一下因子分析,聚类肯定是没问题,各类检验也是用的炉火纯青。他们的不足是:1、如果不告诉他们命题,那么他们就不知道该应用什么样的方法去得到结论了。2、对于数据的处理没问题,但是却没有一个很好的数据解读能力。只能在统计学的角度上解释数据。
数据分析师这群人,对于数据的处理已经不是问题了,他们的重点已经转化到怎么样去解读数据了,同样的数据,在不同人的眼中有不一致的内容。好的数据分析师,是能通过数据找到问题,准确的定位问题,准确的找到问题产生的原因,为下一步的改进,找到机会点的人。往往科班出身的人,欠缺的不是在处理数据上,而是在解读数据上,至于将数据和产品结合到一起,则是其更缺少的能力了。
4、数据应用师:将数据还原到产品中,为产品所用。
5、数据规划师:走在产品前面,让数据有新的价值方向。
1.标准报表。
回答:发生了什么?什么时候发生的?
示例:月度或季度财务报表。
我们都见过报表,它们一般是定期生成,用来回答在某个特定的领域发生了什么。从某种程度上来说它们是有用的,但无法用于制定长期决策。
2.即席查询。
回答:有多少数量?发生了多少次?在哪里?
示例:一周内各天各种门诊的病人数量报告。
即席查询的最大好处是,让你不断提出问题并寻找答案。
3.多维分析。
回答:问题到底出在哪里?我该如何寻找答案?
示例:对各种手机类型的用户进行排序,探查他们的呼叫行为。
通过多维分析(olap)的钻取功能,可以让您有初步的发现。钻取功能如同层层剥笋,发现问题所在。
4.警报。
回答:我什么时候该有所反应?现在该做什么?
示例:当销售额落后于目标时,销售总监将收到警报。
5.统计分析。
回答:为什么会出现这种情况?我错失了什么机会?
示例:银行可以弄清楚为什么重新申请房贷的客户在增多。
这时您已经可以进行一些复杂的分析,比如频次分析模型或回归分析等等。统计分析是在历史数据中进行统计并总结规律。
6.预报。
回答:如果持续这种发展趋势,未来会怎么样?还需要多少?什么时候需要?
示例:零售商可以预计特定商品未来一段时间在各个门店的需求量。
预报可以说是最热门的分析应用之一,各行各业都用得到。特别对于供应商来说,能够准确预报需求,就可以让他们合理安排库存,既不会缺货,也不会积压。
7.预测型建模。
回答:接下来会发生什么?它对业务的影响程度如何?
示例:酒店和娱乐行业可以预测哪些vip客户会对特定度假产品有兴趣。
如果您拥有上千万的客户,并希望展开一次市场营销活动,那么哪些人会是最可能响应的客户呢?如何划分出这些客户?哪些客户会流失?预测型建模能够给出解答。
8.优化。
回答:如何把事情做得更好?对于一个复杂问题来说,那种决策是最优的?
示例:在给定了业务上的优先级、资源调配的约束条件以及可用技术的情况下,请您来给出it平台优化的最佳方案,以满足每个用户的需求。
优化带来创新,它同时考虑到资源与需求,帮助您找到实现目标的最佳方式。
学校管理的数据分析师工作总结【第三篇】
近期主要完成了某产品用户画像分析,从9月底拿到数据,到上周输出第三稿,中间历时一个半月,如果从收到需求,到三稿输出,那就超过两个月,在这次整个分析过程中,遇到了不少问题,尝试了使用不同方法,现在是时候做一个复盘、总结、反思。
在开始阶段,遇到的主要问题是客户的要求是分析产品用户画像报告,因为没有直接跟客户沟通,而需求只有简单的一句话,我只能根据经验列出要分析的要点,确定需要的数据维度。在我确定分析框架后,我发现如果按照我方的想法最后输出的结果却不是客户想到的,那就白做了,所以确定分析框架后还需要客户确认,思路是否可行,分析方向有无异议。这个问题还算比较好解决,客户同意了分析思路即可。
经过与客户沟通后,到了第二阶段,发起提数需求。这个过程总体算比较顺利,客户方数据库工程师首先反馈了一份样本数据,让我方确认数据是否正确,如正确,则提供全量样本。数据验证的过程,主要是由我来完成,对样本数据,我提出了一些疑问,对方也一一解答。当然还有个别字段逻辑问题,我没有发现,对后续的分析带来了一些影响,造成最后能使用的维度减少,是一个遗憾。
拿到全量数据后,对数据进行清洗。在这个过程中发现数据质量非常不理想,很多字段的缺失值占比很大,个别字段也有异常值,总体样本中能使用的记录锐减。一开始我的处理方法比较简单,对缺失值占比达的字段直接不使用,带来的后果就是输出的第一版分析报告过于简单。
重新回到数据,再次对数据进行摸底,而且也调整分析方法,尝试使用聚类分析方法,按用户活跃渠道,对用进行分群,分群后,再结合其他维度,对用户进行描述。这一次输出的报告还是存在一些问题,最大问题就是用户群之间区别不明显,只能继续修改。中间因为要做另一个分析,用户画像分析就暂时先放一边。
完成另一个分析后,继续回到产品用户画像分析,这次同事提出了一些建议,在没有更好的思路前,我按照同事的建议第三次修改分析报告。当然还是要先处理数据,这次我对异常值、缺失值就行了处理,异常值使用的是盖帽法,对缺失值,在一些字段中用0填补,这样增加了可使用的维度。数据清洗完后,对连续变量进行分箱处理,这一次还是先使用聚类分析,对几个字段进行聚类,这样增加了两个大的维度,接着基于两个大的维度,使用对应分析方法,结合其他维度观察变量间的关系,最后的结果显示有部分变量之间是存在明显的关系,有些几乎没有区别。数据处理完后,再次输出分析报告。
完成第三次分析后,我回过头来看看分析中存在的问题,尤其是使用对应分析,查阅了一些资料,发现在对应分析中,应该先进行预分析。聚类分析,两次我都是使用k—means聚类,其实还可以使用二阶聚类,二阶聚类适用于分类变量,这是快速聚类不适用的,我尝试在清洗后的数据中使用二阶聚类,效果尚可。
最近恰好又在看丁亚军老师的讲课视频,讲到聚类分析,再结合我在工作中的应用,对聚类分析方法有了新的认识。聚类方法在刚兴起的时候,是不被传统的统计学家们接受,因为这个方法太简单,没有使用到过多的统计学知识。在实际的工作中,聚类使用的频率还是很高的,尤其是在用户分群方面,用户特征的描述。对应分析是第一次用到,为什么会想到使用对应分析,主要是根据变量类型,几个分类型变量,探究变量间的关系,除了相关分析外,对应分析也使用,而且它的结果更直观。
最后能完成第三稿也要感谢同事的建议,一个人的力量是有限的,群策群力、集思广益才能做得更好。
学校管理的数据分析师工作总结【第四篇】
随着2022年钟声的临近,2021年的工作即将进入尾声。在这个特殊的时点,总结过去的工作,计划未来,就显得尤为重要!在过去的时间里,本人在公司各级领导的正确领导下,在同事们的团结合作和关心帮助下,较好地完成了2021年的各项工作任务,在工作能力和思想政治方面都有了更进一步的提高。现将2021年取得的成绩和存在的不足总结如下:
一、思想政治表现、品德修养及职业道德方面。
2021年以来,本人认真遵守劳动纪律,按时出勤,有效利用工作时间;坚守岗位,需要加班完成工作按时加班加点,保证工作能按时完成。爱岗敬业,具有强烈的责任感和事业心。积极主动学习专业知识,工作态度端正,认真负责地对待每一项工作。
二、工作能力和其它方面。
我的工作岗位是数据与产品支持,准确和效率一直都是我的工作宗旨。工作内容大体分为四块:
1.在月初关账期间,要保证各地提报的非派费用和仓租、外包工、叉车租金分摊的准确性与及时性,同时不仅需要审查数据内容填写的规范性,还需要确认各地是否已经提报。汇总完数据后要进行初步分析,将不符合提报要求的费用提取出来并联系提报人进行确认,并判断是否应该提报。将数据提交给结算部门后,结算在核销的时候会有疑问,这些疑问也需要我来进行跟进与反馈。
2.关账结束后要进行合同外议价的分析,这部分分析分为同一线路同一承运商派车次数大于3次的分析和有合同但走合同外议价的分析两部分,前者分析的目的是为了考虑是否要与此线路签合同,而后者的分析目的是更新完善合同的报价。
3.结束合同外议价的分析工作,则需要进行单个to负毛利的分析,该分析数据主要来源于工盘,包括收入明细,成本明细,派车分摊和租车分摊。分析完成需要将结果发给对应的运输经理,查明产生亏损的原因,并提出合理的建议。
4.在以上三部分工作内容如期进行的时候,全月不定时穿插项目初步分析,此部分内容主要使用者为项目经理、客户经理等。
三、存在的不足。
总结2021来的工作,虽然取得了一定的成绩,自身也有了很大的进步,但是还存在着以下不足:
一是工作方式上还只是按部就班,虽然融入了一些自己的看法和改进,但还未提高到更高的层面,没有从管理层的角度去看待问题。
二是由于工作性质,与区域的负责人和调度员会有频繁的联系,但还不能很好的沉着面对,所以沟通交流能力还需要进一步的加强。
三是知识储备还不够,还需要更广泛的学习与增长经验,成为多方面的人才。
2022年我将进一步发扬优点,改进不足,拓宽思路,求真务实,全力做好本职工作。打算从以下几个方面开展工作:
一是加强工作统筹。根据公司领导的年度工作要求,对全年的工作进行具体谋划,明确内容、时限和需要达到的目标,把各项工作有机地结合起来,理清工作思路,提高办事效率,增强工作实效。
二是加强工作作风培养。始终保持良好的精神状态,发扬吃苦耐劳、知难而进、精益求精、严谨细致、积极进取的工作作风。
三是作为运输总部与区域对接人员之一,一言一行都代表着公司的形象。不仅在工作上必须做到精确、严谨,而且在行为品德上要严格要求自己,树立良好的个人形象。所以我要加倍努力的工作为了公司的发展做出自己的贡献。
学校管理的数据分析师工作总结【第五篇】
但数据分析技能也是未来必不可少的工作技能之一。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定的。
“大数据分析师就是一群玩数据的人,玩出数据的商业价值,让数据变成生产力。”而大数据和传统数据的最大区别在于,它是在线的、实时的、规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。
国内某大型招聘平台给出的数据分析师平均薪酬为:9724(取自1139份样本),且北京、上海、广州、深圳、杭州、南京、武汉、成都、长沙为大数据分析师需求量前十的城市。
学校管理的数据分析师工作总结【第六篇】
而数据分析也越来越受到领导层的重视,借助报表告诉用户什么已经发生了,借助olap和可视化工具等分析工具告诉用户为什么发生了,通过dashboard监控告诉用户现在在发生什么,通过预报告诉用户什么可能会发生。数据分析会从海量数据中提取、挖掘对业务发展有价值的、潜在的知识,找出趋势,为决策层的提供有力依据,为产品或服务发展方向起到积极作用,有力推动企业内部的科学化、信息化管理。
我们举两个通过数据分析获得成功的例子:
(2)hitwise发布会上,亚太区负责人john举例说明:亚马逊30%的销售是来自其系统自动的产品推荐,通过客户分类,测试统计,行为建模,投放优化四步,运营客户的行为数据带来竞争优势。
然而,现实却是另一种情况。我们来看一个来自微博上的信息:在美国目前面临14万~19万具有数据分析和管理能力的专业人员,以及150万具有理解和决策能力(基于对海量数据的研究)的管理人员和分析人员的人才短缺。而在中国,受过专业训练并有经验的数据分析人才,未来三年,分析能力人才供需缺口将逐渐放大,高级分析人才难寻。也就是说,数据分析的需求在不断增长,然而合格的为企业做分析决策的数据分析师却寥寥无几。好多人想做数据分析却不知道如何入手,要么不懂得如何清洗数据,直接把数据拿来就用;要么乱套模型,分析的头头是道,其实完全不是那么回事。按俗话说就是:见过猪跑,没吃过猪肉。
为此,我对自己的规划如下:
第一步:掌握基本的`数据分析知识(比如统计,概率,数据挖掘基础理论,运筹学等),掌握基本的数据分析软件(比如,vba,matlab,spss,sql等等),掌握基本的商业经济常识(比如宏微观经济学,营销理论,投资基础知识,战略与风险管理等等)。这些基础知识,在学校里尽量的学习,而且我来到了和君商学院,这样我可以在商业分析、经济分析上面领悟到一些东西,增强我的数据分析能力。
第二步:参与各种实习。研一开始我当时虽然有课,不过很幸运的找到一份一周只需去一两天的兼职,内容是为三星做竞争对手分析,当然分析框架是leader给定了,我只是做整合资料和往ppt里填充的内容的工作,不过通过兼职,我接触到了咨询行业,也向正式员工学习了很多商业分析、思考逻辑之类的东西。之后去西门子,做和vba的事情,虽然做的事情与数据分析无关,不过在公司经常用vba做一些自动化处理工作,为自己的数据分析工具打好了基础。再之后去了易车,在那里兼职了一个多月,参与了大众汽车销量数据短期预测的项目,一个小项目下来,数据分析的方法流程掌握了不少,也了解了企业是如何用一些时间序列模型去参与预测的,如何选取某个拟合曲线作为预测值。现在,我来到新的地方实习,也非常幸运的参加了一个央企的码头堆场优化系统设计,其实也算数据分析的一种吧,通过码头的数据实施调度,通过码头的数据进行决策,最后写成一个可操作的自动化系统。而这个项目,最重要的就是业务流程的把握,我也参与项目最初的需求调研,和制定工作任务说明书sow,体会颇多。
第三步:第一份工作,预计3-5年。我估计会选择咨询公司或者it公司吧,主要是做数据分析这块比较强的公司,比如fico,埃森哲,高沃,瑞尼尔,ibm,ac等等。通过第一份工作去把自己的知识打得扎实些,学会在实际中应用所学,学会数据分析的流程方法,让自己成长起来。
学校管理的数据分析师工作总结【第七篇】
未成年人是祖国未来的建设者,是*特色事业的接班人。我国现有18岁以下的未成年人约亿人,他们的成长状况,直接关系着国家的前途和民族的命运。今天,随着生子女的逐渐增多,随着市场经济的迅猛发展以及社会结构从传统向现代的迅速转型,未成年人的成长受到了前所未有的关注,同时也经受着巨变中的社会环境的不断考验。因此,全面、科学、深刻地认识未成年人成长的社会环境具有极为深远的意义。针对目前未成年人成长环境堪忧的现象,顺应人民群众对净化未成年人成长环境的强烈呼声,20xx年2月26日,*、*下发了《关于进一步加强和改进未成年人思想道德建设的若干意见》,其中第九个方面强调提出“净化未成年人的成长环境”。在未成年人保护法颁布10周年座谈会上也着重指出应“依法为未成年人营造良好成长环境”。在6月18日召开的“武汉市加强和改进未成年人思想道德建设工作会议”上,湖北省副*、武汉市*陈训秋就为未成年人营造健康成长的良好环境提出了要抓好“一净、二创、三育”。“一净”即净化传媒;“二创”即要创建“无毒社区”和“无艾(滋病)社区”;“三育”即紧紧抓住学校教育、家庭教育、社会教育这三个重要环节。为青少年成长创造良好的环境正成为时代的要求。顺应时代的需求,对未成年人成长环境的研究也不断提上日程,成为当前优化青少年成长环境的一项迫切需要。
2、现实意义。
近年来,全国各地连续发生的各类安全事故、青少年犯罪、权利维护、儿童厌学及退学事件表明,青少年的成长环境受到严峻挑战。在这种情况下,探讨青少年成长环境,将之监督评估的标准和预警机制定量化、操作化,不仅能将营造青少年成长的健康环境落到实处,而且能创造性的形成青少年成长环境的监测评估系统和预警机制。
3、前瞻性。
4、开拓性。
多年来,国内研究青少年健康成长只注重研究一个或几个方面的.问题,而没有形成全方位研究的一个理论体系和立体模型,使我们对青少年成长环境的预测总处于被动地位。本项目将突破青少年成长环境的单向思维和传统研究方式,不仅研究青少年成长环境的有利因素,同时研究青少年成长环境的不良因素,并通过对两者正负影响的对比来映青少年成长总环境的健康状况,为青少年成长环境的研究提供新的视野,使之更加科学化。
二、项目基础。
支持此项目完成主要基于我们现在已拥有智力基础、组织基础、工作基础。
1、智力基础。
此项目是武汉市青少年教育办公室、共青团武汉市、武汉学社会学研究所合作完成。武汉学社会学研究所在此领域具有较强的人才智力优势,主持此次项目研究的周运清教授竖内知名的社会学家,也是20xx年“武汉市青少年成长环境的监测评估系统及其应用”研究的主持人。
2、组织基础。
学校管理的数据分析师工作总结【第八篇】
在数据分析岗位工作三个月以来,在公司领导的正确领导下,深入学习关于淘宝网店的相关知识,我已经从一个网店的门外汉成长为对网店有一定了解和认知的人。现向公司领导简单汇报一下我三个月以来的工作情况。
作为一个食品专业出身的人,刚进公司时,对网店方面的专业知识及网店运营几乎一无所知,曾经努力学习掌握的数据分析技能在这里根本就用不到,我也曾怀疑过自己的选择,怀疑自己对踏出校门的第一份工作的选择是不是冲动的。但是,公司为我提供了宽松的学习环境和专业的指导,在不断的学习过程中,我慢慢喜欢上自己所选择的行业和工作。一方面,虚心学习每一个与网店相关的数据名词,提高自己在数据分析和处理方面的能力,坚定做好本职工作的信心和决心。另一方面,向周围的同同事学习业务知识和工作方法,取人之长,补己之短,加深了与同事之间的感情。
三个月来,在领导和同事们的支持和配合下,自己主要做了一下几方面的工作:
1。汇总公司的产品信息日报表,并完成信息日报表的每日更新,为产品追单提供可靠依据。
2。协同仓库工作人员盘点库存,汇总库存报表,每天不定时清查入库货品,为各部门的同事提供最可靠的库存数据。
3。完成店铺经营月报表、店铺经营日报表。
4。完成每日客服接待顾客量的统计、客服工作效果及工作转化率的查询。
5。每日两次对店铺里出售的宝贝进行逐个排查,保证每款宝贝的架上数的及时更新,防止出售中的宝贝无故下架。
6。配合领导和其他岗位的同事做好各种数据的查询、统计、分析、汇总等工作。做好数据的核实和上报工作,并确保数据的准确性和及时性。
7。完成领导交代的其它各项工作,认真对待、及时办理、不拖延、不误事、不敷衍,尽量做到让领导放心和满意。
三个月来,在公司领导和同事们的指导和配合下,自己虽然做了一些力所能。
出处
及的工作,但还存在很多的不足,主要是阅历浅,经验少,有时遇到相对棘手的问题考虑欠周密,视角不够灵活,缺乏应变能力;理论和专业知识不够丰富,导致工作有时处于被动等等。另外,由于语言不通的问题,在与周围的同事沟通时,存在一定的障碍。
针对以上不足,在今后的工作中,自己要加强学习、深入实践、继续坚持正直、谦虚、朴实的工作作风,摆正自己的位置,尊重领导,团结同事,把网店的数据分析工作做细做好。
1。对公司人员状况的分析。
要想管好一个企业,首先要管好这个企业的人,要想管好一个企业的人,首先要对这个企业人员的基本情况有个比较全面的、细致的、科学的正确的了解。
目前公司成员大部分为90后,是一个年轻化的团队。他们大部分在长辈们的宠爱中长大,心理素质不怎么成熟,没有自信心,没有目标,责任心不强,不怎么能吃苦,心理承受能力较弱,不爱学习,不明白工作的真正意义。不过也有一部分比较懂事,做事比较踏实、勤奋、性格也比较好。
因此,我们在招聘的时候,要招那些肯学习、善于学习、领悟力学习力强的人。不过,这部分人一般都比较现实,对待遇、公正公平、发展空间比较看重。
其实,我们要想打造一流的企业,培养一流的员工,一流的管理人员并不是难事。最重要的是要有一颗真正的,持之以恒的做事业的心。
2。对员工工作状态的分析。
目前,部分岗位存在分工不明确的现象,出现问题时,同事之前相互推诿,不愿意承担责任,这也是部分员工责任心不强的最直接反映。部分员工没有团队合作意识,这就可能导致工作在某个环节衔接不上,进而有可能出现重大问题。
因此,明确分工和加强员工的团队合作意识也是公司目前需要解决的问题。
企业文化,对我本人来讲,是一个管理学里面比较专业的词,我怕自己讲不好它。但我却可以深刻的体会到,这个无形的东西就在我的周围,在我们的骨髓里。因为我觉得它重要,所以,还是想讲它,而且觉得非讲不可。
在我所走到的企业里,旺旺集团的企业文化给我留下的印象最深。他们有自己明确的经营理念、经营目标、公司训、公司口号、企业标识、公司社歌和独立的传媒机构。他们的企业文化具有很强的感染力和凝聚力。
但是,很长一段时间以来,我们的公司一直处在“黎明前的黑暗”之中,为什么公司领导的那种不到山顶不罢休的气势、决心和信心,并没有感染所有的员工,那种不到山顶不罢休的气势、决心和信心并没有很好的变成我们的企业文化。没有被突出出来,没有在公司发展的日日夜夜中,张扬的体现给我们企业所有的员工们看。甚至是没有被人感觉到。
所以,加强健康向上的企业文化的建设工作,也就成为一种必要。十分的必要。也该引起足够的重视。把目前创业阶段的决心和信心力量、企业和员工相互之间的理解、信任、支持和默契融入到我们的企业文化中去。从而感染和吸引更多的优秀人才到我们中来,共同开创我们企业的未来。