双曲线知识点总结参考4篇

网友 分享 时间:

【前言导读】此篇优秀范文“双曲线知识点总结参考4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

向量的加法1

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条。

(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号。

⑺若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.

简证: =.

常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.

双曲线方程知识点在高考中属于比较重要的考察点,希望考生认真复习,深入掌握。

双曲线知识点总结2

双曲线方程

1. 双曲线的第一定义:

⑴①双曲线标准方程:. 一般方程:.

⑵①i. 焦点在x轴上:

顶点: 焦点: 准线方程 渐近线方程:或

ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或 .

②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率。 ④准线距(两准线的距离);通径。 ⑤参数关系。 ⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)

长加短减原则:

构成满足(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)

⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率。

⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线。与互为共轭双曲线,它们具有共同的渐近线:.

⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为。

例如:若双曲线一条渐近线为且过,求双曲线的方程?

解:令双曲线的方程为:,代入得。

⑹直线与双曲线的位置关系:

区域①:无切线,2条与渐近线平行的直线,合计2条;

区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;

区域③:2条切线,2条与渐近线平行的直线,合计4条;

区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;

区域⑤:即过原点,无切线,无与渐近线平行的直线。

小结:过定点作直线与双曲线有且仅有一个交点,可以作出的`直线数目可能有0、2、3、4条。

(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号。

⑺若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m?n.

简证: =.

常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.

扩展资料3

焦点坐标、渐近线方程

方程x/a-y/b=1(a>0,b>0)

c=a+b

焦点坐标(-c,0),(c,0)

渐近线方程:y=±bx/a

方程 y/a-x/b=1(a>0,b>0)

c=a+b

焦点坐标(0,c),(0,-c)

渐近线方程:y=±ax/b

几何性质

1.双曲线 x/a-y/b =1的简单几何性质

(1)范围:|x|≥a,y∈R.

(2)对称性:双曲线的'对称性与椭圆完全相同,关于x轴、y轴及原点中心对称。

(3)顶点:两个顶点A1(-a,0),A2(a,0),两顶点间的线段为实轴,长为2a,虚轴长为2b,且c=a+b.与椭圆不同。

(4)渐近线:双曲线特有的性质

方程:y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上)

或令双曲线标准方程x/a-y/b=1中的1为零即得渐近线方程。

(5)离心率e>1,随着e的增大,双曲线张口逐渐变得开阔。

(6)等轴双曲线(等边双曲线):x2-y2=a2(a≠0),它的渐近线方程为y=±b/a_x,离心率e=c/a=2

(7)共轭双曲线:方程 x/a-y/b=1与x/a-y/b=-1 表示的双曲线共轭,有共同的渐近线和相等的焦距,但需注重方程的表达形式。

数乘向量4

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)·b=λ(a·b)=(a·λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

35 1269405
");