教务员的工作总结范文与数据分析【汇编8篇】

网友 分享 时间:

【写作参考】一篇好的范文往往能让您的写作事半功倍,下面是由阿拉题库网友为您分享的“教务员的工作总结范文与数据分析【汇编8篇】”优质范例,供您写作参考之用,轻松写作,远离加班熬夜,希望以下内容对您有所帮助,喜欢就下载支持吧!

教务员的工作总结与数据分析【第一篇】

一是认真做好各项报表的定期制作和查询,无论是本部门需要的报表还是为其他部门提供的报表。保证报表的准确性和及时性,并与报表使用人做好良好的沟通工作。并完成各类报表的分类、整理、归档工作。

二是协助主管做好现有系统的维护和后续开发工作。包括topv系统和多元化系统中的修改和程序开发。主要完成了海关进出口查验箱报表、出口当班查验箱清(“两学一做”学习活动总结)单、驳箱情况等报表导出功能以及龙门吊班其他箱量输入界面、其他岗位薪酬录入界面的开发,并完成了原有系统中交接班报表导出等功能的修改。同时,完成了系统在相关岗位的安装和维护工作,保证其正常运行。

三是配合领导和其他岗位做好各种数据的查询、统计、分析、汇总工作。做好相关数据的核实和上报工作,并确保数据的准确性和及时性。

四是完成领导交办的其他工作,认真对待,及时办理,不拖延、不误事、不敷衍,尽力做到让领导放心和满意。

三、存在的不足和今后的努力方向。

半年来,在办公室领导和同事们的指导帮助下,自己虽然做了一些力所能及的工作,但还存在很多的不足:主要是阅历浅,经验少,有时遇到相对棘手的问题考虑欠周密,视角不够灵活,缺乏应变能力;理论和专业知识不够丰富,导致工作有时处于被动等等。

针对以上不足,在今后的工作中,自己要加强学习、深入实践、继续坚持正直、谦虚、朴实的工作作风,摆正自己的位置,尊重领导,团结同志,共同把办公室的工作做细做好。

教务员的工作总结与数据分析【第二篇】

性别:男。

民族:汉族。

籍贯:浙江宁波。

现居住地:宁波。

婚姻状况:

手机:87******。

身份证:3302*********。

邮箱:job@。

求职意向。

期望行业:金融。

期望地点:宁波。

期望月薪:5000。

工作性质:全职。

到岗时间:随时。

工作经验。

起讫时间:10月至12月公司名称:xx估计有限公司职位描述:主要负责公司评级数据的核收整理,还有就是负责外部数据的收集;组建公司数据库系统,参与公司数据产品的开发工作,并制作数据产品。

起讫时间:202月至8月公司名称:xx科技发展有限公司职位描述:主要是完成数据分析项目过程中的数据提取,数据分析和数据展示工作;另外开发并持续完善公司各项业务的数据的统计分析模型,确保其准确性、实用性以及可衡量性;能够基于数据分析,得到有价值的信息,从而为公司的运营决策、产品方向、销售策略提供数据支持。

教育经验。

语言能力/技能证书。

自我评价。

本人具有较强的统筹沟通能力,具有较强的团队合作能力,性格开朗生活乐观,责任心强。对数据有很高的.敏感度,能发现数据之间的联系,具有突出的逻辑思维能力和分析判断能力,能熟练运用数据的处理及分析方法,熟练掌握spss,sas等统计软件。

教务员的工作总结与数据分析【第三篇】

而数据分析也越来越受到领导层的重视,借助报表告诉用户什么已经发生了,借助olap和可视化工具等分析工具告诉用户为什么发生了,通过dashboard监控告诉用户现在在发生什么,通过预报告诉用户什么可能会发生。数据分析会从海量数据中提取、挖掘对业务发展有价值的、潜在的知识,找出趋势,为决策层的提供有力依据,为产品或服务发展方向起到积极作用,有力推动企业内部的科学化、信息化管理。

我们举两个通过数据分析获得成功的例子:

(2)hitwise发布会上,亚太区负责人john举例说明:亚马逊30%的销售是来自其系统自动的产品推荐,通过客户分类,测试统计,行为建模,投放优化四步,运营客户的行为数据带来竞争优势。

然而,现实却是另一种情况。我们来看一个来自微博上的信息:在美国目前面临14万~19万具有数据分析和管理能力的专业人员,以及150万具有理解和决策能力(基于对海量数据的研究)的管理人员和分析人员的人才短缺。而在中国,受过专业训练并有经验的数据分析人才,未来三年,分析能力人才供需缺口将逐渐放大,高级分析人才难寻。也就是说,数据分析的需求在不断增长,然而合格的为企业做分析决策的数据分析师却寥寥无几。好多人想做数据分析却不知道如何入手,要么不懂得如何清洗数据,直接把数据拿来就用;要么乱套模型,分析的头头是道,其实完全不是那么回事。按俗话说就是:见过猪跑,没吃过猪肉。

为此,我对自己的规划如下:

第一步:掌握基本的`数据分析知识(比如统计,概率,数据挖掘基础理论,运筹学等),掌握基本的数据分析软件(比如,vba,matlab,spss,sql等等),掌握基本的商业经济常识(比如宏微观经济学,营销理论,投资基础知识,战略与风险管理等等)。这些基础知识,在学校里尽量的学习,而且我来到了和君商学院,这样我可以在商业分析、经济分析上面领悟到一些东西,增强我的数据分析能力。

第二步:参与各种实习。研一开始我当时虽然有课,不过很幸运的找到一份一周只需去一两天的兼职,内容是为三星做竞争对手分析,当然分析框架是leader给定了,我只是做整合资料和往ppt里填充的内容的工作,不过通过兼职,我接触到了咨询行业,也向正式员工学习了很多商业分析、思考逻辑之类的东西。之后去西门子,做和vba的事情,虽然做的事情与数据分析无关,不过在公司经常用vba做一些自动化处理工作,为自己的数据分析工具打好了基础。再之后去了易车,在那里兼职了一个多月,参与了大众汽车销量数据短期预测的项目,一个小项目下来,数据分析的方法流程掌握了不少,也了解了企业是如何用一些时间序列模型去参与预测的,如何选取某个拟合曲线作为预测值。现在,我来到新的地方实习,也非常幸运的参加了一个央企的码头堆场优化系统设计,其实也算数据分析的一种吧,通过码头的数据实施调度,通过码头的数据进行决策,最后写成一个可操作的自动化系统。而这个项目,最重要的就是业务流程的把握,我也参与项目最初的需求调研,和制定工作任务说明书sow,体会颇多。

第三步:第一份工作,预计3-5年。我估计会选择咨询公司或者it公司吧,主要是做数据分析这块比较强的公司,比如fico,埃森哲,高沃,瑞尼尔,ibm,ac等等。通过第一份工作去把自己的知识打得扎实些,学会在实际中应用所学,学会数据分析的流程方法,让自己成长起来。

教务员的工作总结与数据分析【第四篇】

数据分析师,简单切词为“数据”,“分析”,“师”。因此,获取必要的数据,分析这些数据,然后从数据中发现一些问题提出自己的想法,这就是一个数据分析师的基本工作内容。

自己做了两年数据分析师,真的觉得古语说的对,“功夫在诗外”。一名好的数据分析师,接到一个需求时,会更多考虑这个需求本身,包括要做的东西是什么,为什么这么做,还可以怎么做,怎么去做,关键点是什么。都想清楚了,才去动手做。建议任何一名数据分析人员,都能在做以前把问题想清楚,确认清楚,不要等到做完才发现自己做错了,那样会很浪费时间。自己这方面曾犯过n多错误。

下面简单谈下做一名数据分析师要经历的几个步骤:

(1)获取数据。

获取相关的数据,是数据分析的前提。每个企业,都有自己的一套存储机制。比如淘宝,所有的数据都在hadoop上,很多数据都要经过hadoop,hive来获取。因此,基础的sql语言是必须的。具备基本sql基础,再学习下hive的细节的语法,基本就可以通过hive拿到很多数据了。每个需求明确以后,都要根据需要,把相关的数据获取到,做基础数据。

(2)数据处理。

对于数据的处理,有两种形式:

a如果初步提取的数据是在linux上,建议学一门脚本语言,比如awk,或者python。如果掌握一门脚本语言,不仅可以在linux系统上写很多自动脚本来运行,会大大节省自己的时间,而且可以通过脚本语言把基础数据处理成自己想要的任何形式,直接可以使用。

b如果数据没有在linux上,那可以download,然后通过其他统计软件来处理。个人推荐sas或者r语言。sas的强大,不必多说。没有sas解决不了的问题,而且sas也有sql,处理起来也方便。r语言最近也很火,而且免费,packages越来越多,画图也简单,类似matlab。如果前期数据处理的好,后续只需要通过r或者sas画一些图就可以了。在数据分析师的世界,按照价值排序,图表文字。

(3)分析数据。

这里的数据,包括图,表,数字几种。分析数据是整个分析的关键,也考验分析师的水平。好的分析师,可以根据趋势图,对比数据,敏锐的观察到很多问题。可是这需要对业务,对数据有很深的了解,才会把数据和业务结合起来,发挥两者的价值,完成需求。所以,一名数据分析师,要把更多的时间放在了解业务上。只有业务了解,细节清楚,才会明白业务变动可能引起的数据指标的变动,也会在后续的需求分析中,更快更全面的解决其他人提出的问题。可能很多人都很困惑,怎么才能“敏锐”的观察到数据的变动呢,我为什么怎么也发现不了问题呢?个人感觉可以通过以下方法,来慢慢锻炼:

a多问几个为什么。比如,看到一些指标,就想想这些指标代表什么,用自己的话可以怎么理解;看到一条趋势线有波动,就想想为啥子某个点异常波动呢?多问问问题,自己就会加深对业务和指标关联的敏感性。

b借鉴统计方法。统计学中,都会有一些横纵对比,趋势分析等等。对比,在分析师数据时候,是一个很重要的东西。任何东西,也因为了对比,才会有高有低,有长有短。另外,分布,也是一个很好的东西。分布的变化,就意味着变动,变动的发展结果,就能知道业务发展的好坏。再次,占比啊等等,都是很简单但是实用的方法。

c向师兄请教。有的时候,一个问题,自己沉迷其中不能自拔,旁观者一句话,就能点清自己的思路。当自己分析数据不得要领的时候,就多请教师兄。

(4)展示成果。

分析数据以后,解决需求的问题,就需要汇总分析的成果,给到其他人。可能分析的过程,拿到的数据有很多,需要全部给其他人么?怎么去罗列这些数据呢?可能很多人都犯难。有一次,一个同学来问我,她有很多数据,但是就是不知道该怎么组织,才能证明自己的结论是对的。其实,作为一名数据分析师,就是根据数据,把问题解决,提出一两条参考建议给到需求方就ok了。因此,回复的结果简单明了就好。如果是回复一封邮件,可以这样来做:

b如果觉得有必要,就在下面再把分析过程写进去;。

c如果图和图表不多,可以添加到邮件第三部分。毕竟放上数据,任何同学有疑问,可以随时去看数据。如果图和图表实在太多,就放到附件!

其实,做一名数据分析师,真的不容易,不仅要懂业务,还要会技术,更要敏锐发现问题,总结,还要提出建议。自己干了n多工作,最后还不一定能得到一个好的结果。做了两年数据分析师,自己的重心也在慢慢的转移。从刚开始技术学习,到后面技术+业务的结合,到现在自己又钻到业务,研究业务,慢慢发现:一名好的数据分析师,是一个好的产品的规划者和行业的领跑者。

教务员的工作总结与数据分析【第五篇】

在数据分析岗位半年以来,在公司部门领导和党支部的的正确领导下,认真贯彻执行党的各项方针、政策,紧紧围绕公司开展的“积极主动谋发展,务实奋进争一流”的主题实践活动,深入学习实践科学发展观,全面完成了各项工作目标,现简单的向领导汇报一下我半年来的工作情况。

一、虚心学习,不断提高政治素质和业务水平。

作为一名党员和公司的一份子,具备良好的政治和业务素质是做好本职工作的前提和必要条件。半年来,我一方面利用工作和业余时间认真学习了科学发展观、十一届全国人大二次会议和xx在中纪委十七届三次全会上的讲话精神,进一步提高了自己的党性认识和政治水平;一方面虚心向周围的领导、同事学习工作经验、工作方法和相关业务知识,取人之长,补己之短,加深了与各位同事之间的感情,同时还学习了相关的数据库知识,提高了自己在数据分析和处理上的技术水平,坚定了做好本职工作的信心和决心。

二、踏实工作,努力完成好领导交办的各项工作任务。

半年来,在主管的带领和同事们的支持下,自己主要做了以下几项工作:

教务员的工作总结与数据分析【第六篇】

1、强化理论和业务的学习。我重视加强理论和业务知识学习,在工作中,坚持一边工作一边学习,不断提高自身综合业务素质水*,认真学习工作业务知识,并结合自己在实际工作中存在的不足有针对性地进行学习,并且参加统计职业资格考试,明确了统计员的工作职责。

2、在工作以来,我始终坚持严格要求自己,勤奋努力,时刻牢记在自己*凡而普通的工作岗位上,努力做好本职工作。在具体工作中,我努力做好领导交给的每一个工作,分清轻重缓急,科学安排时间,按时、按质、按量完成任务。

3、每天及时、准确按销售合同或出入库单的明细填写统计台帐,并及时作好数据的备份。

4、每月底根据本月实际发生情况向总部报送营业收入快报;产值指标月报;劳动工资及保障情况月报;主要产品产、销、存情况月报;能源消费月报表,并存档。

5、年底将部分数据用表格的形式进行汇总与分析。主要有《产成品交库情况统计表》、《公司人员统计表》、《劳动工资及保障情况统计表》、《年度经济活动分析》。

6、参加汇报了《关于做好特色产业中小企业发展资金项目》《xx省工业结构调整项目》的申报工作。

7、每周五向省工信委汇报项目建设完成情况,每月底向省科工局汇报项目进展情况及项目建设存在的问题,每月初向港区经发局、招商局汇报项目完成投资情况和建设完成情况。

1、在工作中,虽然我不断加强理论知识的学习,努力使自己在各方面走向熟练,但由于自身学识、能力、思想、心理素质等的局限,导致在*时的工作中比较死板、心态放不开,工作起来束手束脚,对工作中的一些问题没有全面的理解与把握。同时由于个人不爱说话,与同事们的沟通和交流很少,工作目标不明确,并且遇到问题请教不多,没有做到虚心学习。

2、身为新时代的大学生,却没有青年人应有的朝气,学习新知识、掌握新东西不够。领导交办的事基本都能完成,但自己不会主动牵着工作走,很被动,而且缺乏工作经验,独立工作能力不足。在工作中不够大胆,总是在不断学习的过程中改变工作方法,而不能在创新中去实践,去推广。

1、努力完成本职工作之余,学习更多有关财务、统计方面的知识,以提升自己专业学识。

2、积极参加一些和专业有关的培训,有效提高对统计数据的准确性,并做好数据的登记、上报与分析。

3、在原有的各种统计报表基础上,对一些没有实际意义的表格进行改进,并对统计数字的准确性进行加强。

今后工作中我将努力奋斗,无论自己手头的工作有多忙,都服从公司领导的工作安排,遇到工作困难,及时与领导联系汇报,并寻找更好解决问题的办法,继续巩固现有成绩,针对自身的不足加以改进,争取做的更好。

教务员的工作总结与数据分析【第七篇】

基于现有的业务知识和统计学基础知识及基本思想的理解与掌握,通过数据库及统计分析工具对数据的调取与处理、分析,达到对现有问题or主题的探索与剖析,最终实现业务问题的解决or优化。

业务知识:最重要。

业务分析能力:业务问题的拆解、探索与定位,也包括一些思维导图工具的使用(visio,mind,mindmanager)。

数据分析能力:基本的统计学及数学知识及较强的逻辑思维能力及分析工具的掌握spss,r,python等。

数据提取能力:在数据库中能完成较为复杂的数据查询及预处理的能力(sql使用能力)。

数据处理及展现能力:主要指ecel及ppt的使用,也有信息图制作能力的要求。

3.长期只处理数据的.诟病for分析人员?

对于分析人员来说,若无实际分析经验,但经常提取数据,作为一个数据库工程师的角色开展工作时,容易形成一种惯性思维:从数据角度出发去看问题。这是很危险的,因为一条连贯、清晰的业务逻辑中间会产生各种数据,同时由于业务人员操作的相对灵活以及数据录入和etl处理的问题会导致某一业务节点产生不同值的数据,若不清楚业务流程,业务知识,很难确认异常值的合理性及异常值产生的关键原因。长此以往,这种数据角度出发的惯性思维就很难改变了,进而任何分析,出发点都是错的,分析过程和结果可想而知。

4.对于“数据敏感”的理解?

相关学历背景及工作年限;。

对数据预处理的重视程度;。

对细小业务问题解决方案及流程的抽取固化能力;。

算法知识的应用能力;。

业务知识的深度和广度;。

任务的整体把控和分配能力;。

沟通及表述的逻辑清晰程度;。

6.数据分析人员、应用型数据挖掘人员、算法型数据挖掘人员的区别?

应用型数据挖掘人员在数据预处理及模型调参上下的功夫最多;。

7.数据分析人员的角色定位——企业贤内助。

教务员的工作总结与数据分析【第八篇】

近期主要完成了某产品用户画像分析,从9月底拿到数据,到上周输出第三稿,中间历时一个半月,如果从收到需求,到三稿输出,那就超过两个月,在这次整个分析过程中,遇到了不少问题,尝试了使用不同方法,现在是时候做一个复盘、总结、反思。

在开始阶段,遇到的主要问题是客户的要求是分析产品用户画像报告,因为没有直接跟客户沟通,而需求只有简单的一句话,我只能根据经验列出要分析的要点,确定需要的数据维度。在我确定分析框架后,我发现如果按照我方的想法最后输出的结果却不是客户想到的,那就白做了,所以确定分析框架后还需要客户确认,思路是否可行,分析方向有无异议。这个问题还算比较好解决,客户同意了分析思路即可。

经过与客户沟通后,到了第二阶段,发起提数需求。这个过程总体算比较顺利,客户方数据库工程师首先反馈了一份样本数据,让我方确认数据是否正确,如正确,则提供全量样本。数据验证的过程,主要是由我来完成,对样本数据,我提出了一些疑问,对方也一一解答。当然还有个别字段逻辑问题,我没有发现,对后续的分析带来了一些影响,造成最后能使用的维度减少,是一个遗憾。

拿到全量数据后,对数据进行清洗。在这个过程中发现数据质量非常不理想,很多字段的缺失值占比很大,个别字段也有异常值,总体样本中能使用的记录锐减。一开始我的处理方法比较简单,对缺失值占比达的字段直接不使用,带来的后果就是输出的第一版分析报告过于简单。

重新回到数据,再次对数据进行摸底,而且也调整分析方法,尝试使用聚类分析方法,按用户活跃渠道,对用进行分群,分群后,再结合其他维度,对用户进行描述。这一次输出的报告还是存在一些问题,最大问题就是用户群之间区别不明显,只能继续修改。中间因为要做另一个分析,用户画像分析就暂时先放一边。

完成另一个分析后,继续回到产品用户画像分析,这次同事提出了一些建议,在没有更好的思路前,我按照同事的建议第三次修改分析报告。当然还是要先处理数据,这次我对异常值、缺失值就行了处理,异常值使用的是盖帽法,对缺失值,在一些字段中用0填补,这样增加了可使用的维度。数据清洗完后,对连续变量进行分箱处理,这一次还是先使用聚类分析,对几个字段进行聚类,这样增加了两个大的维度,接着基于两个大的维度,使用对应分析方法,结合其他维度观察变量间的关系,最后的结果显示有部分变量之间是存在明显的关系,有些几乎没有区别。数据处理完后,再次输出分析报告。

完成第三次分析后,我回过头来看看分析中存在的问题,尤其是使用对应分析,查阅了一些资料,发现在对应分析中,应该先进行预分析。聚类分析,两次我都是使用k—means聚类,其实还可以使用二阶聚类,二阶聚类适用于分类变量,这是快速聚类不适用的,我尝试在清洗后的数据中使用二阶聚类,效果尚可。

最近恰好又在看丁亚军老师的讲课视频,讲到聚类分析,再结合我在工作中的应用,对聚类分析方法有了新的认识。聚类方法在刚兴起的时候,是不被传统的统计学家们接受,因为这个方法太简单,没有使用到过多的统计学知识。在实际的工作中,聚类使用的频率还是很高的,尤其是在用户分群方面,用户特征的描述。对应分析是第一次用到,为什么会想到使用对应分析,主要是根据变量类型,几个分类型变量,探究变量间的关系,除了相关分析外,对应分析也使用,而且它的结果更直观。

最后能完成第三稿也要感谢同事的建议,一个人的力量是有限的,群策群力、集思广益才能做得更好。

35 2480550
");