五年级数学下册知识点总结【优秀4篇】

网友 分享 时间:

【导言】此例“五年级数学下册知识点总结【优秀4篇】”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

小学五年级数学下册知识点【第一篇】

知识点概念总结

1.小数乘整数的意义:求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

2.小数乘法法则

先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

3.小数除法

小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

4.除数是整数的小数除法计算法则

先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

5.除数是小数的除法计算法则

先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

6.积的近似数:

四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。

7.数的互化

(1)小数化成分数

原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

(2)分数化成小数

用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

(3)化有限小数

一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

(4)小数化成百分数

只要把小数点向右移动两位,同时在后面添上百分号。

(5)百分数化成小数

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

(6)分数化成百分数

通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

(7)百分数化成小数

先把百分数改写成分数,能约分的要约成最简分数。

8.小数的分类

(1)有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 、 、 都是有限小数。

(2)无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: …… ……

(3)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

(4)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: …… …… ……;一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的。循环节。 例如: ……的循环节是“ 9 ” , ……的循环节是“ 54 ” 。

9. 循环节:如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数。

10.简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。

11.方程:含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可)

方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时 ,方程才成立 。

12.方程的解

使方程左右两边相等的未知数的值,叫做方程的解。

如果两个方程的解相同,那么这两个方程叫做同解方程。

13.方程的同解原理:

(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

14.解方程:解方程,求方程的解的过程叫做解方程。

15.列方程解应用题的意义:

用方程式去解答应用题求得应用题的未知量的方法。

16.列方程解答应用题的步骤

(1)弄清题意,确定未知数并用x表示;

(2)找出题中的数量之间的相等关系;

(3)列方程,解方程;

(4)检查或验算,写出答案。

17.列方程解应用题的方法

(1)综合法

先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。

(2)分析法

先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

18.列方程解应用题的范围 :小学范围内常用方程解的应用题:

(1)一般应用题;

(2)和倍、差倍问题;

(3)几何形体的周长、面积、体积计算;

(4)分数、百分数应用题;

(5)比和比例应用题。

19.平行四边形的面积公式:

底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边=ah

20.三角形面积公式:

S△=1/2_ah(a是三角形的底,h是底所对应的高)

21.梯形面积公式

(1)梯形的面积公式:(上底+下底)×高÷2。

用字母表示:(a+b)×h÷2

(2)另一计算公式: 中位线×高

用字母表示:l·h

(3)对角线互相垂直的梯形:对角线×对角线÷2

扩展资料

1.小数分类

(1)纯小数:整数部分是零的小数,叫做纯小数。例如: 、 都是纯小数。

(2)带小数:整数部分不是零的小数,叫做带小数。 例如: 、 都是带小数。

(3)纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: …… ……

(4)混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 …… ……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。

2.循环节的表示方法

小数化分数分成两类。

一类:纯循环小数化分数,循环节做分子;连写几个九作分母,循环节有几位写几个九。

另一类:混循环小数化分数(问题就是这类的),小数部分减去不循环的数字作分子;连写几个9再紧接着连写几个0作分母,循环节是几个数就写几个9,不循环(小数部分)的数是几个就写几个0。

3.平行四边形的面积

平行四边形的面积等于两组邻边的积乘以夹角的正弦值;

4.三角形的面积

(1)S△=1/2_ah(a是三角形的底,h是底所对应的高)

(2)S△=1/2acsinB=1/2bcsinA=1/2absinC(三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数)

(3)S△=abc/(4R) (R是外接圆半径)

(4)S△=[(a+b+c)r]/2 (r是内切圆半径)

(5)S△=c2sinAsinB/2sin(A+B)

单元 长方体和正方体【第二篇】

1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体特点:

(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体特点:

(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

                

不同点

长方体

都有6个面,12条棱,8个顶点。

6个面都是长方形。

(有可能有两个相对的面是正方形)。

相对的棱的长度都相等

正方体

6个面都是正方形。

12条棱都相等。

3、长方体、正方体有关棱长计算公式:

长方体的棱长总和=(长+宽+高)_4=长_4+宽_4+高_4

L=(a+b+h)_4

长=棱长总和÷4-宽 -高

a=L÷4-b-h

宽=棱长总和÷4-长 -高

b=L÷4-a-h

高=棱长总和÷4-长 -宽

h=L÷4-a-b

正方体的棱长总和=棱长_12

L=a_12

正方体的棱长=棱长总和÷12

a=L÷12

4、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长_宽+长_高+宽_高)_2

S=2(ab+ah+bh)

无底(或无盖)

长方体表面积= 长_宽+(长_高+宽_高)_2

S=2(ab+ah+bh)-ab

S=2(ah+bh)+ab

无底又无盖长方体表面积=(长_高+宽_高)_2

S=2(ah+bh)

贴墙纸

正方体的表面积=棱长_棱长_6 S=a_a_6 用字母表示:S= 6a2

生活实际:

油箱、罐头盒等都是6个面

游泳池、鱼缸等都只有5个面

水管、烟囱等都只有4个面。

注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

5、物体所占空间的大小叫做物体的体积。

长方体的体积=长_宽_高 V=abh

长=体积÷宽÷高 a=V÷b÷h

宽=体积÷长÷高 b=V÷a÷h

高=体积÷长÷宽 h= V÷a÷b

正方体的体积=棱长_棱长_棱长

V=a_a_a = a3

读作“a的立方”表示3个a相乘,(即a·a·a)

长方体或正方体底面的面积叫做底面积。

长方体(或正方体)的体积=底面积_高

用字母表示:V=S h(横截面积相当于底面积,长相当于高)。

注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

固体一般就用体积单位,计量液体的体积,如水、油等。

常用的容积单位有升和毫升也可以写成L和ml。

1升=1立方分米

1毫升=1立方厘米

1升=1000毫升

(1L = 1dm3 1ml = 1cm3)

长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

_形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。

排水法的公式:

V物体 =V现在-V原来

也可以 V物体 =S_(h现在- h原来)

V物体 =S_h升高

8、体积单位换算

大单位_进率=小单位

小单位÷进率=大单位

进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)

1立方分米=1000立方厘米=1升=1000毫升

1立方厘米=1毫升

1平方米=100平方分米=10000平方厘米

1平方千米=100公顷=1000000平方米

注意:长方体与正方体关系

把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

重量单位进率,时间单位进率,长度单位进率

大单位_进率=小单位

小单位÷进率=大单位

长度单位:

1千米 =1000 米 1 分米=10 厘米

1厘米=10毫米 1分米=100毫米

1米=10分米=100厘米=1000毫米

(相邻单位进率10)

面积单位:

1平方千米=100公顷

1平方米=100平方分米

1平方分米=100平方厘米

1公顷=10000平方米(平方相邻单位进率100)

质量单位:

1吨=1000千克

1千克=1000克

人民币:

1元=10角 1角=10分 1元=100分

单元 因数和倍数【第三篇】

1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。

(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找。

(3)一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

(4)2、3、5的倍数特征

1) 个位上是0,2,4,6,8的数都是2的倍数。

2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

3)个位上是0或5的数,是5的倍数。

4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。

同时满足2、3、5的倍数,实际是求2_3_5=30的倍数。

5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。

如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等

4:自然数按能不能被2整除来分:奇数、偶数。

奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

最小的奇数是1,最小的偶数是0.

关系: 奇数+、- 偶数=奇数

奇数+、- 奇数=偶数

偶数+、-偶数=偶数。

5、自然数按因数的个数来分:质数、合数、1、0四类。

质数(或素数):只有1和它本身两个因数。

合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

1: 只有1个因数。“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4,连续的两个质数是2、3。

每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

20以内的质数:有8个(2、3、5、7、11、13、17、19)

100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97

100以内找质数、合数的技巧:

看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

关系:奇数_奇数=奇数

质数_质数=合数

6、最大、最小

A的最小因数是:1;

A的最大因数是:A;

A的最小倍数是:A;

最小的自然数是:0;

最小的奇数是:1;

最小的偶数是:0;

最小的质数是:2;

最小的合数是:4;

7、分解质因数:把一个合数分解成多个质数相乘的形式。

用短除法分解质因数 (一个合数写成几个质数相乘的形式)。

比如:30分解质因数是:(30=2_3_5)

8、互质数:公因数只有1的两个数,叫做互质数。

两个质数的互质数:5和7

两个合数的互质数:8和9

一质一合的互质数:7和8

两数互质的特殊情况:

⑴1和任何自然数互质;

⑵相邻两个自然数互质;

⑶两个质数一定互质;

⑷2和所有奇数互质;

⑸质数与比它小的合数互质;

9、公因数、最大公因数

几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。

用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来)

几个数的公因数只有1,就说这几个数互质。

如果两数是倍数关系时,那么较小的数就是它们的最大公因数。

如果两数互质时,那么1就是它们的最大公因数。

10、公倍数、最小公倍数

几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)

如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。

如果两数互质时,那么它们的积就是它们的最小公倍数。

11、求最大公因数和最小公倍数方法

用12和16来举例

1、求法一:(列举求同法)

最大公因数的求法:

12的因数有:1、12、2、6、3、4

16的因数有:1、16、2、8、4

最大公因数是4

最小公倍数的求法:

12的倍数有:12、24、36、48、…

16的倍数有:16、32、48、…

最小公倍数是48

2、求法二:(分解质因数法)

12=2_2_3

16=2_2_2_2

最大公因数是:

2_2=4(相同乘)

最小公倍数是:

2_2_3_2_2= 48(相同乘_不同乘)

五年级下册数学总结【第四篇】

本学期,我继续担任学校五年级一班的数学科教学工作。一学期来,我自始至终以认真严谨的治学态度,坚持不懈的'精神,从事自己心爱的教育教学工作,并取得了一定的成绩。为了不断提高教学质量,促进学生全面发展,现将本学年数学教学工作总结如下:

一、激发学生学习兴趣,让他们体验到学习数学的快乐。

由于本班后进生多,因此在本学期,我想尽一切办法,把每一道数学题深入浅出的展示出来,为了所有同学都跟上进度,有时候,一节课就只能讲一道题。在本学期,我采取的方法是,遇到问题学生先自己思考,然后小组讨论,接着小组代表展示,最后我做总结。利用这种方法,每个同学都有发言的机会,增加了多数同学的学习兴趣,并且使他们不同程度体验成功的快乐。比如:本学期张兆尚同学取得了很大的进步。让每一位同学都能体验到学习数学的成功与快乐,这是我一直以来的教学梦想。

二、认真钻研业务,努力提高课堂40分钟的教学效率。

在业务上,本人从不以自己多年教学的“丰富经验”自居。本人积极利用各种机会,学习教育教学新理念,钻研教材教法,坚持不懈地进行“自我充电”,以提高自己的业务理论水平。课堂上,我把学到的新课程理念结合本班实际,努力贯彻到课堂教学中去,以期提高课堂40分钟的效率。课余,我经常与同事们一起探讨教学过程中遇到的各种问题,互相学习,共同提高;我从中,我更是感受到了学无止境的道理。要充分发挥课堂教学这个“主阵地”的作用,提高课堂40分钟的效率,我们要与时俱进,坚持不懈地学习探究教学新理论新实践。

三、关爱学生与严格要求相结合,尽量使每一位学生进步。

亲其师,才能信其道。在平时与学生接触的过程中,我不以“师长”自居,尽量与学生平等交往,建立“朋友式”的深厚友谊,努力关爱每一位学生的成长。与学生多谈心,帮助学生解决学习上与生活上的各种困惑。同时,面对个别调皮的学生,也实行严格要求、正确导向的办法,让他们树立起正确的荣辱观。大班教学,纪律是提高课堂效率的重要保证。面对各层次的学生,我既要关爱大部分学生,又要面对个别不守纪律的捣蛋分子实行严格要求。课堂上,我尽量做到分层施教与个别辅导相结合;课余,我让优秀学生与“待进生”实行“一帮一”结对子,互帮互助,共同提高。

由于半年的努力学生的学习成绩有了稳步提高。由于半年的不断努力,我班提前完成了教学任务并取得了不错的成绩,在今后的教学中,我会努力逐步树立素质教育观念和新课程标准理念,不断超越自我,挑战自己,争取取得更好的成绩。

35 161502
");