九年级数学下教案导学案的设计与实施精彩8篇
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“九年级数学下教案导学案的设计与实施精彩8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
九年级数学下教案导学案的设计与实施【第一篇】
1.用分式表示生活中的一些量.
2.分式的基本性质及分式的有关运算法则.
3.分式方程的概念及其解法.
4.列分式方程,建立现实情境中的数学模型.
(二)能力训练要求。
1.使学生有目的的梳理知识,形成这一章完整的知识体系.
2.进一步体验“类比”与“转化”在学习分式的基本性质、分式的运算法则及其分式方程解法过程中的重要作用.
3.提高学生的归纳和概括能力,形成反思自己学习过程的意识.
(三)情感与价值观要求。
使学生在总结学习经验和活动经验的过程中,体验因学习方法的大力改进而带来的快乐,成为一个乐于学习的人.
九年级数学下教案导学案的设计与实施【第二篇】
(一)知识我先懂:
方差:设有n个数据,各数据与它们的平均数的差的平方分别是。
我们用它们的平均数,表示这组数据的方差:即用。
来表示。
给力小贴士:方差越小说明这组数据越。波动性越。
(二)自主检测小练习:
1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为。
2、甲、乙两组数据如下:
甲组:1091181213107;。
乙组:7891011121112.
分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.
九年级数学下教案导学案的设计与实施【第三篇】
1.经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察。
2.探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力。
情感态度价值观通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力。
九年级数学下教案导学案的设计与实施【第四篇】
证明(二)。
判定定理及相关结论的证明,利用尺规作已知角的平分线。
判定定理及相关结论的证明。
知识点。
1、三角形相关定理。
推论两角及其中一角的对边对应相等的两个三角形全等.(aas)。
定理等腰三角形的两个底角相等.(等边对等角)。
推论等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(三线合一)。
定理有两个角相等的三角形是等腰三角形.(等角对等边)。
定理有一个角等于60º的等腰三角形是等边三角形.
2、直角三角形。
定理在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半.
角三角形,其中一个锐角等于30º,这它所对的直角边必然等于斜边的一半.)。
定理直角三角形两条直角边的平方和等于斜边的平方.(勾股定理)。
定理如果三角形两边的平方和等于第三方的平方,那么这个三角形是直角三角形.
互逆命题逆命题互逆定理逆定理。
定理斜边和一条直角边对应的两个直角三角形全等.(hl)。
3、线段的垂直平分线直线与射线有垂线,但无垂直平分线。
定理线段垂直平分线上的点到这条线段两个端点的距离相等。
定理到一条线段两端点距离相等的点,在这条线段的垂直平分线上。(线段垂直平分线逆定理)。
定理三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。(如图1所示,ao=bo=co)。
cc。
e图1图2。
4、角平分线。
定理角平分线上的点到这个角的两边的距离相等。(角平分线是到角的两边距离相等的所有点的集合。)定理在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。(角平分线逆定理)。
定理三角形的三条角平分线相交于一点,并且这个点到三边距离相等.(交点为三角形的内心.如图2,od=oe=of)。
九年级数学下教案导学案的设计与实施【第五篇】
从甲地到乙地有两条公路:一条是全长600km的普通公路,另一条是全长480km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从甲地到乙地所需的时间。
这一问题中有哪些等量关系?
如果设客车由高速公路从甲地到乙地所需的时间为h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程______________________。
学生分组探讨、交流,列出方程.
九年级数学下教案导学案的设计与实施【第六篇】
引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)。
甲:9、10、10、13、7、13、10、8、11、8;。
乙:8、13、12、11、10、12、7、7、10、10;。
问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数:=)。
(2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了)。
归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别是。
我们用它们的平均数,表示这组数据的方差:即用来表示。
(一)例题讲解:
测试次数第1次第2次第3次第4次第5次。
段巍1314131213。
金志强1013161412。
给力提示:先求平均数,在利用公式求解方差。
(二)小试身手。
1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定。
去参加比赛。
1、求下列数据的众数:
(1)3,2,5,3,1,2,3(2)5,2,1,5,3,5,2,2。
九年级数学下教案导学案的设计与实施【第七篇】
1、通过复习,加强统计观念的培养。
2、使学生能对数据进行简单分析,根据分析结果作出简单的判断与预测。
3、进一步理解平均数的意义,会求简单数据的平均数。
4、进一步体会小数的含义,掌握小数的读写法,并能进行简单的小数加、减法运算。
九年级数学下教案导学案的设计与实施【第八篇】
2.?难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.
教学过程。
一、复习引入。
学生活动:请同学独立完成下列问题.
2
问题1.前面有关“执竿进屋”的问题中,我们列得方程x-8x+20=0。
列表:
问题2列表:
3
22。
果抛开实际问题,问题2中还有x=-11的解.
一元二次方程的解也叫做一元二次方程的根.
2
回过头来看:x-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.
2
例1.下面哪些数是方程2x+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.
分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.
2
解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x+10x+12=0的两根.
2
22。
练习:关于x的一元二次方程(a-1)x+x+a-1=0的一个根为0,则求a的值。
点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.
例3.你能用以前所学的知识求出下列方程的根吗?
222。
(1)x-64=0(2)3x-6=0(3)x-3x=0。
三、巩固练习。
教材思考题练习1、2.
四、归纳小结(学生归纳,老师点评)本节课应掌握:
(1)一元二次方程根的概念;。
(2)要会判断一个数是否是一元二次方程的根;。
1.教材复习巩固3、4综合运用5、6、7拓广探索8、选用课时作业设计.
下一篇:幼儿专注心得体会范文大全8篇