数学教案-多边形的内角和(精选8篇)
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“数学教案-多边形的内角和(精选8篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
数学教案-多边形的内角和【第一篇】
学生已经学过三角形的内角和定理的知识基础,并且具备一定的化归思想,但是推理能力和表达能力还稍稍有点欠缺。针对这种情况,我会引导学生利用分类、数形结合的思想,加强对数学知识的应用,发展学生合情合理的推理能力和语言表达能力。
1.知识与技能:运用三角形内角和定理来推证多边形内角和公式,掌握多边形的内角和的计算公式。
2.过程与方法:经理探究多边形内角和计算方法的过程,培养学生的合作交流的意识。
3.情感态度与价值观:感受数学化归的思想和实际应用的价值,同时培养学生善于发现,积极探究,合作创新的学习态度。
1、请看:我身后的建筑物是什么?——水立方。我看到水立方时发现它的膜结构的结合处都是多边形,你们想知道这些多边形的内角和吗?(多媒体展示)。
知道四边形的内角和为360°,现在你能利用三角形的内角和定理证明吗?自主学习教材第34页“动脑筋”
教学说明“解放学生的手,解放学生的大脑”,鼓励学生积极参与合作交流,寻找多种图形形式,深入全面转化的本质——将四边形转化为三角形问题来解决.
预设回答:能,可以引对角线,将多边形分成几个三角形。
让学生合作交流讨论,展示探究成果。教材第35页“探究”
n边形有几个内角?是否可以“转化”为多个三角形的角来求得呢?如何“转化”?
教学说明通过五边形、六边形、七边形、八边形等特殊多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法.
例:教材第36页例1。
教学说明让学生利用多边形的内角和公式求一个多边形的内角和或它的边数,加深知识的理解与运用.
1、若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()。
a.十三边形b.十二边形。
c.十一边形d.十边形。
2、十二边形的内角和为,已知一个多边形的内角和是1260°,则这个多边形的边数是。
教学说明由学生自主完成,教师及时了解学生的学习效果,让学生经历运用知识解决问题的过程.对需要帮助的学生及时点拨并加以强化.在完成上述题目后,让学生完成练习册中本课时的对应训练部分.
1、这节课你有什么新的收获?
教材第36页练习1、2题。
边数越多,内角和就越大;
每增加一条边,内角和就增加180度。
数学教案-多边形的内角和【第二篇】
(1)知识结构:
(2)重点和难点分析:
重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。
难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。
2.教法建议。
(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。
(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。
(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。
(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。
教学目标 :
2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;
3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;
4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.
教学重点:
教学难点 :
教学过程 :
(一)复习。
在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.
(二)提出问题,引入新课。
利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)。
问题:你能类比三角形的概念,说出四边形的概念吗?
(三)理解概念。
1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.
在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.
2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.
3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.
练习:课本124页1、2题.
4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.
注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.
(五)应用、反思。
例1已知:如图,直线,垂足为b,直线,垂足为c.
求证:(1);(2)。
(2) 。
练习:
1.课本124页3题.
小结:
能力:向学生渗透类比和转化的思想方法.
作业 :课本130页2、3、4题.
数学教案-多边形的内角和【第三篇】
《探索多边形的内角和》一课终于上完了,然而对这一课的思考才刚刚开始,正如周梦莉校长所说,我们的目标不是这一课本身,而是对于这一课的研究给我们数学教学的一点启发。
有幸与实验小学赵丽老师同时选中《多边形的内角和》这一课,但我们从不同角度不同方式对它进行了解读。20世纪90年代,因为农村小学学生人数的急剧减少,我们学校在课堂上尝试性的进行了分层异步教学,在同一节课中,根据学生认知水平差异,把学生分成a,b两组,在组内又依托知识水平相近原则,把3,4名学生分为一个小组,通常采用合——分——合的模式进行教学,即,当a组同学教学时,b组自学,反之亦然,经过与普通班的对比研究,发现复式班学生在学习效果上有着明显的成效。基于这一基础,我采用分层的模式来进行多边形的内角和的教学,这一尝试,让我对自己的.数学教学有了如下反思:
1,以经验为基础,让学生得到不同的发展。
基于学生的认知经验及活动经验,对学生进行分组,以期达到不同的学生在数学上得到不同程度的发展的目标,学习能力较强的同学要能吃饱,学习能力较弱的同学要在原有基础上有所进步。在实际教学中,对于a组和b组的学生,除了在教学形式上有所区别外,a组教学为主,b组自学为主,我在教学时间的分配上对ab组并没有显着区分,在以后的尝试探索中,我应对a组加以更细致的教学指导,对b组更大胆的放手,让学生上台说,做,教,减少b组的教学时间。
2,勇于放手,培养学生自学的能力。
在一开始设计b组的学习单时,即使b组同学学习能力较强,但出于对学生的担忧,担心学生想不到用分一分的方法,在学习单上,我引导学生,多边形能够分成几个三角形,内角和怎么算。而周校长建议我,是否能给学生更多的空间,把“小问题”变为“大问题”,直接提问学生,多边形的内角和是多少,让学生去尝试探索各种方法,而不仅局限于转化为三角形内角和的方法。在后来的实际教学中,采用了“大问题”的提问方式,我惊喜的发现,学生的探究自学能力比我预想的出色许多。
3,细节入手,培养学生良好习惯。
小学数学良好习惯的培养不仅对学生自身的数学学习有所裨益,对课堂教效果的影响更是尤为明显。在分层教学的模式中,为避免ab组互相间的干扰,必须在课堂上对每组学生提出明确的要求,课前乃至平时都要对学生的学习习惯进行培养,这样才能让我们的数学老师对课堂全局的把握更加深刻,才能够让数学课堂井然有序,数学教学效果得到最大程度的保证。
“授人以鱼,不如授人以渔。”我们的数学分层教学不光是为了学生掌握某一定的知识,而是让学生在不同的学习方式中不断感悟体会,寻找适合自己的学习方法,最终以得到不同程度的发展。
数学教案-多边形的内角和【第四篇】
学情分析:
学生已经学过三角形的内角和定理的知识基础,并且具备一定的化归思想,但是推理能力和表达能力还稍稍有点欠缺。针对这种情况,我会引导学生利用分类、数形结合的思想,加强对数学知识的应用,发展学生合情合理的推理能力和语言表达能力。
教学目标:
1.知识与技能:运用三角形内角和定理来推证多边形内角和公式,掌握多边形的内角和的计算公式。
2.过程与方法:经理探究多边形内角和计算方法的过程,培养学生的合作交流的意识。
3.情感态度与价值观:感受数学化归的思想和实际应用的价值,同时培养学生善于发现,积极探究,合作创新的学习态度。
教学重点:
数学教案-多边形的内角和【第五篇】
尊敬的各位领导:
老师大家好!
由我为大家介绍我们工作坊团队成员共同设计的《多边形的内角和》一课。我将从教材思考、学生调研、教学目标完善、教学过程设计等方面进行汇报。
《多边形的内角和》是冀教版小学数学四年级下册第九单元探索乐园的第1课时,本单元要求是“在问题探索中,促进数学思维发展”。实现“不同的人在数学上得到不同的发展”是《数学课程标准》的基本理念,“发展合情推理和演绎推理能力”“清晰地表达自己的想法”“学会独立思考、体会数学的基本思想和思维方式”是课程标准关于数学思考方面的具体要求。
教材安排了两个例题,一是探究多边形边数与分割的三角形个数的规律,二在分割三角形的基础上探索多边形内角和。为了促进学生思考的连续性与有序性,我们将教材中的两个例题进行有机结合,在充分研究四边形五边形内角和方法的基础上提出如何得出任意多边形内角和问题,为发展学生的数学思维提供素材、创造探索的空间,让学生充分体会“画线段—分割三角形—求内角和”这样一个连续推理归纳得出规律的活动。
学生在本册第四单元认识了三角形、知道三角形内角和等于180度,会用字母表示数、字母表示数量关系的基础上进行学习的。我们团队的成员对所在学校四年级同学进行了调研,发现他们对于数学问题具有“猜想”的意识,但是缺乏理性的思考。他们愿意自己动手尝试探索研究问题,但是对于探索之后有序思考、归纳总结认识还不够全面。
有了以上分析,我们在尊重教材的基础上,确定了本节课教学目标,并对“过程与方法”目标进行了完善补充。
知识与技能:探索并了解多边形的边数与分割成的三角形个数,以及内角和之间隐含的规律;能运用多边形的内角和知识解决相关问题。
过程与方法:学生经历探索的全过程,积累探索和发现数学规律的经验,让学生尝试从不同的角度寻求解决问题的方法,体会从特殊到一般的认识问题的方法,发展理性思考。
教学难点:字母表达式的总结
教学准备:教师准备三角形、四边形、五边形、六边形图片,裁纸刀,课件。
学生学具准备四边形、五边形等多边形图片模型,三角板。
教学过程共分为四个环节。
教学过程:
一、创设情境,回顾三角形知识---注重知识的“生长点”
同学们请看这是什么图形?你了解它吗?你能向大家介绍三角形哪些知识?(这样设计意图是注尊重学生已有知识经验,体会数学知识的内在联系,重点认识三角形内角的含义及三角形内角和是180度的特点)
我们知道了三角形内角和是180度,那么四边形,五边形的内角和是多少度呢?这节课我们就一起来研究。
二、自主合作,探究新知—注重“数学算法的优化”共设计了三个探究活动。
1、四边形内角和
(1)有同学愿意猜想四边形内角和吗?猜想也要有根据,你能说说你的根据吗?(引导学生体会理性思考)
有没有同学一看到四边形就马上想到360度呢?你是根据哪个图形直接想到的?(让学生借助已有的长方形、正方形知识进行理性推理,打通新旧知识之间联系)
我们通过计算长方形、正方形的内角和是360度,是不是能说明所有四边形内角和都是360度?(引导学生体会这是一种“假设”因为它是特殊图形中做的成“猜想”)
我们需要研究怎样的图形才能发现它们一般的特征和规律?(任意四边形)
(2)小组活动,利用学具中的任意四边形想办法计算内角和。师巡视(注意学生不同的方法)
(3)学生汇报。可能有计算法,引导学生起名字“量角求和法”
撕角法,起名字“拼角求和法”。
切割法1,起名字“一分为二求和法”(学生演示这种方法时,教师帮忙切割,强调弄清楚四个内角怎样变成六个角,分成了几个三角形,一是画了一条线段,二是分成了二个三角形)
归纳总结:四边形内角和是360度。(通过不同的个性方法,验证四边形内角和,进一步认识内角含义,感受不同算法的好处)
2、五边形内角和
今天的研究我们就停在这里吗?根据经验,我们要向什么挑战?(五边形)你能猜想它是多少度吗?请你选择一种方法,证实你的猜想。
总结:看来数学的方法有很多,但是有的方法有局限性,有的方法只适合三角形和四边形,量角有误差,拼角法有的会超过360度,而第三种看起来最简便。我们称之为“优化法”
列出算式:180x3=540度(学生不仅在计算度数上有了经验,而且在计算方法上也有了经验)
利用这种最优的方法,同桌同学互相说一说,四边形和五边形各画了几条线段,分割成几个三角形,怎样求内角和?(设计意图是让学生对探究过程进行归纳整理,为进一步有序的研究其他图形指明研究方向。)
现在我们就来看一看其他图形是不是也有这样的规律?
3、六边形、七边形内角和
小组合作,自己完成探究过程,填写表格。
学生汇报,总结画出的线段数和三角形个数之间联系。
三、归纳总结,形成规律---注重字母表达式的推理
通过大家的研究,找到了规律,请问10边形,能画几条线段,分成几个三角形?
90边形?100边形?n边形呢?(老师说我们研究三角形的个数,怎么去找边数的呢?学生说分割出的三角形的个数跟边数有关。那一千边形形,n边形呢?n-2得到的是什么?得到分成的三角形的个数。)
师:今天你学到了什么?在今天的研究中哪些知识或研究的过程给你留下了深刻的印象?师:今天我们所研究的多边形都是凸多边形,还有一种多边形,它们叫做凹多边形,你能不能运用今天的研究方法,探究凹多边形的内角和吗?老师期待你在课后的研究成果。(设计意图是不仅让学生对本节课知识进行总结,也对数学的思想方法进行回顾,鼓励学生利用这些思想方法向类似数学问题挑战,以达到学以致用的目的。)
以上是我们对这节课的粗浅设计,恳请大家给予批评指正,谢谢!
数学教案-多边形的内角和【第六篇】
1、回忆所学的平面图形的面积推导过程,弄清图形面积之间的内在联系,巩固学生对面积计算公式的理解和记忆。
2、通过整理知识网络图进一步发展学生的空间观念,提高学生分析和综合概括的能力。
3、让学生通过灵活运用知识解决实际问题,提高不同层次学生解决实际问题的能力。
4、体会数学与生活的联系,培养学生学习数学的兴趣,以及良好的学习习惯和学习态度。
通过整理知识网络图进一步发展学生的空间观念,提高学生分析和综合概括的能力。
通过灵活运用知识解决实际问题,提高不同层次学生解决实际问题的能力。
根据本课的教学内容,本课采用先整理后练习的复习模式。
本课的指导思想是发挥学生的主题作用,引导学生自主学习,使不同学生在数学课上得到不同的发展。《课标》指出:动手实践、自主探索与合作交流是学生学习数学的.重要方式;学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本课在回忆整理应用的教学环节中,通过教师引导和点拨,提高学生的归纳整理知识的能力,并充分调动了学生的学习积极性,从而提高了学生运用所学的知识解决问题的能力。
(一)整理和复习。
1、回忆。
课的开始,我让学生回忆学过的平面图形的面积,想到哪个说哪个,给了学生选择的余地,提高学生回答问题的兴趣。然后让学生回忆推动过程时,采取了先让同桌交流的方法,这是因为我分析学生可能会想到不同图形的面积推导公式,为了照顾不同层次的学生,让学生能人人动口,提高学生的语言表达能力。
2、整理。
在分享的“数学教案-多边形的内角和(精选8篇)”,学生边说,我一边用课件演示,空间想象能力强的学生可以闭上眼睛在头脑中演示这个过程,空间想象能力弱的学生,可以借助多媒体来回忆,以便帮助他们更好的理解记忆面积公式。
(二)构建知识网络图。
构建知识网络图是课前我比较担心的,我不知道学生会把知识网络图构建成什么样子。虽然课上在我的引领下这样比较好控制,但是为了照顾不同层次的学生,我把这项工作放在了课前,先让学生在家里整理好,这要就避免了学生之间相互模仿,无法体现个性;再通过课上的回忆让学生自己修改,使学生逐步学会整理归纳的方法;最后同学之间交流,完善知识网络图。在这个环节,面对学生构建的知识网络图,只要有道理我就会给予肯定,这样才能使学生敢于发表自己的意见,体现个体差异,增强自信心。
(三)解决问题。
在解决问题的过程中,我用了羊村村长领着大家去羊村参观这一情境,充分调动了不同层次学生的学习积极性。
要想去羊村参观就得闯关成功,这三关分别针对不同方面:第一关针对的是我们班的学困生,这些题让他们回答,可以使他们获得成功的体验,帮助他们树立自信心,提高学习数学的兴趣;第二关考验学生是否能灵活运用面积公式,针对的是中等学生;第三关是对学生在面积计算中经常出现错误的地方进行针对性练习,面向全体学生,以提高做题正确率。
闯关成功后,计算玻璃的面积,是解决实际生活中的问题,让学生体会到数学与生活的联系。这块玻璃是一个组合图形,既可以用分割法计算,又可以用添补法计算,学生自己动手分一分、画一画,用自己的方法计算,充分体现了学生的个体差异。为了帮助学生理解,我制作了课件进行演示,直观形象,针对学困生降低了难度。
(四)课堂作业。
课堂作业的设计也充分考虑到了不同层次的学生,第1题和第题较为简单,学优生做完后,给出了一道思考题,这道题为学有余力的学生准备。
(五)小结。
今天我们复习了多边形的面积,并利用图形之间的内在联系制作了知识网络图,还运用所学帮助羊村解决了实际问题,在这里懒羊羊代表羊村谢谢大家,带给大家一首好听的歌,请大家伴随着歌声下课。
数学教案-多边形的内角和【第七篇】
从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些“想一想”“试一试”“做一做”等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。
二,学生情况。
学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。
三,教学目标及重点,难点的确定。
知识与技能掌握多边形内角和与外角和定理,进一步了解转化的数学思想。
过程与方法经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。
情感态度与价值观让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。
教学难点转化的数学思维方法。
四,教法和学法。
本次课改很大程度上借鉴了美国教育家杜威的“在做中学”的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”及初一学生的特点,我确定如下教法和学法。
课堂组织策略利用学生的'好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。
学生学习策略明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。
辅助策略利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。
五,教学过程设计。
整个教学过程分五步完成。
1,创设情景,引入新课。
首先解决四边形内角的问题,通过转化为三角形问题来解决。
2,合作交流,探索新知。
更进一步解决五边形内角和,乃至六边形,七边形直到n边形的内角和,都能用同样的方法解决。学生分组讨论。
3,归纳总结,建构体系。
多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。
4,实际应用,提高能力。
5,分组竞赛,升华情感。
四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。
数学教案-多边形的内角和【第八篇】
教学目标 。
知识技能。
通过探究,归纳出 。
数学思考。
1、 通过测量、类比、推理等数学活动,探索的公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。
2、 通过把多边形转化成三角形体会转化思想在几何中的应用,同时。
时让学生体会从特殊到一般的认识问题的方法。
3、 通过探索多边形内角和公式,让学生逐步从实验几何过度到。
论证几何。
解决问题。
通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效的解决问题。
情感态度。
通过对生活中数学问题的探究,进一步提高学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,感受数学活动的重要意义和合作成功的喜悦,提高学生学习的热情。
重点。
难点。
在探索时,如何把多边形转化成三角形。
知识联系。
多边形的对角线和三角形的内角和为本节课的知识做了铺垫,本节课的内容为多边形的外角和做知识上的准备。
知识背景。
对多边形在生活中有所认识。
学习兴趣。
通过探究过程更能激发学生学习的兴趣。
教学工具。
三角板和几何画板。
教学流程设计。
活动流程图。
活动内容和目的。
活动一,教师和学生任意画几个多边形,用量角器测其内角和。
活动四、探索任意公式。
活动六、小结和布置作业 。
通过分组测量,得出这几个。
通过用不同方法分割四边形为三角形,探索四边形的内角和。
通过类比四边形内角和的得出方法,探索其他,发展学生的推理能力。
通过画正八边形体会和应用。
梳理所学知识,达到巩固发展和提高的目的。
教学过程 设计。
问题与情景。
师生行为。
设计意图。
设计情景:什么是正多边形?
正八边形有什么特点?
你会画边长为3cm的正八边形吗?
学生思考并回答问题。
学生不会画八边形,画八边形需要知道它的每一个内角,怎么就能知道八边形的每一个内角,就是今天要解决的问题,以此来激发学生的学习兴趣和求知欲。
活动1、
在练习本画出任意四边形,五边星,六边形,七边形。
通过测量猜想每一个,感受数学的可实验性,感受数学由特殊到一般的研究思想。
活动2(重点)(难点)。
学生在练习本上把一个四边形分割成几个三角形,教师在黑板上画几个四边形,叫几个学生来分割,从而用推理求四边形的内角和,师生共同讨论比较那一种分割方法比较合理有优点。
通过分割及推理,培养学生用推理论证来说明数学结论的能力,同时也培养学生比较和归纳的能力。
通过分割及推理,进一步培养学生的解决问题和推理的能力。
活动4、探索任意。
把活动2和3中的结论写下来,进行对比分析,进一步猜想和推导任意,教师作总结性的结论,并且用动画演示多边形随着边数的增加其内角和的变化过程。
活动5、画一个边长为3cm的八边形。
让学生在练习本上画一个边长为3cm的八边形,教师进行评价和展示。
活动6、小结和布置作业 。
师生共同回顾本节所学过的内容。
上一篇:读完大学的心得实用(优质10篇)