四年级数学下册《四则运算》教案汇总5篇
【路引】由阿拉题库网美丽的网友为您整理分享的“四年级数学下册《四则运算》教案汇总5篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
则运算【第一篇】
教学内容:
教科书第83页例2及“练一练”,练习十六第1-4题。
教学目标:
1.学会用分数乘法和减法解决一些稍复杂的实际问题,进一步积累解决问题的策略,增强数学应用意识。
2.在运用已有知识和经验解决一些稍复杂的实际问题的过程中,发展思维,提高分析问题、解决问题的能力,进一步体会数学知识之间的内在联系,体会数学知识和方法在解决实际问题中的价值,从而提高数学学习的兴趣和学好数学的信心。
教学重点:
学会用分数乘法和减法解决一些稍复杂的实际问题,进一步积累解决问题的策略,增强数学应用意识。
教学对策:
借助画线段图和分析数量关系来寻找解决问题的方法,鼓励学生要积极交流自己的思考过程,真正理解数量关系后再列式解答。
教学准备:
教学光盘及补充练习
教学过程:
一、复习铺垫
1.口算下列各题。
4/15+7/15 1/2-1/3 5/9×3/5 2÷1/2 1/4÷4
18÷1/2 18×1/2 0÷2/5 1-3/4 1÷4/7
21×3/7 10/7÷15 21÷3/7 1/2×1/3 5/6×36
进行口算,学生将得数写本子上,时间到后统计完成的题目数量及正确率。
2.口答。
(1)五(1)班中男生人数占全班人数的2/5,那么女生人数占全班的( )。
(2)一本故事书已看了2/7,还剩全书的( )。
(3)一根绳子长12米,剪去了1/4,剪去了( )米。
(4)一盒牛奶900毫升,喝去了1/3,喝去了( )毫升。
指名学生口答得数并分析每一题的数量关系。
二、学习新知
1.教学例2。
出示例题:岭南小学六年级有45个同学参加学校运动会,其中男运动员占5/9。女运动员有多少人?
(1)学生读题,提问:从题中你知道了什么?要我们解决什么问题?指名学生回答题中的已知条件和所求问题。
(2)提问:根据“男运动员占5/9”这个信息你还知道了什么?(把45个同学看作单位“1”、女运动员占总人数的4/9)为了清楚地表示男、女运动员和总人数之间的关系,我们可以借助画线段图来分析。你能在线段图上分别表示出男、女运动员所占的部分吗?
(3)教师在黑板上画出完整的线段图。
(4)提问:要求女运动员有多少人,可以先算什么?用你想到的方法列式算一算。(学生独立思考后列式计算)
(5)探讨方法。
指名学生交流自己的解题方法:
方法一:根据男运动员占5/9,先算出男运动员的人数,再算女运动员人数,列式:45-45×5/9
方法二:根据男运动员占5/9可以知道女运动员占总人数的4/9,最后求女运动员人数。列式为:45×(1-5/9)。
追问:45×5/9表示什么?1-5/9又表示什么?
小结:刚才两种不同的解题思路中,都把哪个数量看做单位“1”,第一种方法先求出男运动员人数,再用总人数减去男运动员人数求出女运动员人数;而第二种方法先求出女运动员占总人数的几分之几,再用乘法求出女运动员的人数。不管哪种方法都要两步计算才能解决这个问题,题目比以前复杂一些,所以今天我们研究的是稍复杂的分数乘法的实际问题。(板书课题)
2.“练一练”。
(1)学生读题后可以先找出关键句分析数量关系,然后列式解答。
(2)先同桌之间说说解题思路,再请几位学生全班交流,教师及时评价。
三、巩固练习
用你喜欢的方法解决下列各题。
1.某粮库原来有大米1500袋,运走3/5,还剩多少袋?
2.少先队员一共采集标本168件,其中5/8是植物标本,其余是昆虫标本。昆虫标本有多少件?
3.张大伯有一块长方形菜地,长30米,宽20米。这块地的7/12种茄子,其余种番茄。番茄种了多少平方米?
学生认真读题后独立列式解答,讲评时重点让学生说说解题思路。
4.(1)一桶油10千克,用去4/5,用去多少千克/
(2)一桶油10千克,用去4/5,还剩多少千克?
(3)一桶油10千克,用去4/5千克,还剩多少千克?
学生独立思考后解答,讲评时将这三小题进行比较,比较已知条件和所求问题以及解题思路。
四、全课总结
通过这节课的学习,你有什么收获?在解题时要注意什么?
五、布置作业
课内作业:完成练习十六第1-4题。
则运算【第二篇】
教学目标:
1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。
2、 通过练习,培养学生的计算能力及初步的逻辑思维能力。
3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。
4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。
教学重点:确定运算顺序再进行计算。
教学难点:明确混合运算的顺序。
教学过程:
一、复习
1、复习整数混合运算的运算顺序
(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。
(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。
2、说出下面各题的运算顺序。
(1)428+63÷9―17×5 (2)+÷4―3×
(3)÷[(+)×] (4)[7+(—)]×(―39)
二、新授
1、教学例4
(1)学生读题,明确已知条件及问题,尝试说说自己的解题思路。
(2)根据学生的回答,归纳出两种思路:
a、可以从条件出发思考,根据彩带长8m ,每朵花用 m 彩带,可以先算出一共做了多少朵花。
b、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。
(3)学生独立列出综合算式后,让他们说说运算顺序,再进行计算。
2、巩固练习:p34“做一做”
(1)学生独立完成第一题,然后全班校对。引导学生比较计算分数连除或连乘除的两种算法,通过比较,使学生发现统一约分后再计算比分步计算简便。
(2)学生读题理解题意,指名说说解题思路,再让学生独立列式计算。
三、练习
1、练习九第1题:前三题提倡学生选择统一成乘法的方法进行计算。
2、练习九第2-4题
(1)第2题:可以先求每层有多高,再求楼的楼板到地面的高度,但要注意引导学生意识到6楼楼板到地面的高度实际上只有5层楼的高度。
(2)第3题可引导学生形成两种思路:a、先求每小时录入了这篇论文的几分之几,再求8小时可录入这篇论文的几分之几;b、先求8小时是3小时的几倍,再求8小时录入几分之几。
(3)第4题同样有两种方法:a、可以先求一共能装多少袋,列式:240÷ × ;b、可以先求装完的 有多少千克,综合算式是240× ÷ 。
四、布置作业
练习九第5-9题。
则运算【第三篇】
教学目标
1.通过教学,学生懂得应用加法运算定律可以使一些分数计算简便,会进行分数加法的简便计算。
2.培养学生仔细、认真的学习习惯。
3.培养学生观察、演绎推理的能力。
教学重点
整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便。
教学难点
整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便。
教学过程
一、复习准备演示课件“整数加法运算定律推广到分数加法”
1.教师:整数加法的运算定律有哪几个?用字母怎样表示?
板书:a+b=b+a
(a+b)+c=a+(b+c)
2.下面各等式应用了什么运算定律?
①25+36=36+25 ②(17+28)+72=17+(28+72)
③+=+ ④(+)+=+(+)
教师:加法交换律和结合律适用于整数和小数,是否也适用于分数加法呢?这节课我们就一起来研究。
二、学习新课继续演示课件“整数加法运算定律推广到分数加法”
1.出示:下面每组算式的左右两边有什么关系?
○ ○
教师说明:整数加法运算定律,对分数加法同样适用。
教师提问:整数加法的运算定律可以在什么范围内使用?
(加法的交换律、结合律中的数,既包括了整数,又包括了小数和分数)
2.出示例3 计算:
观察:这些加数分母和分子有什么特点?
思考:怎样可以使计算简便?
学生口述,教师板书:
教师提问:这道题哪里应用了加法交换律?哪里应用了加法结合律?
最后结果要注意什么问题?
学生总结:应用整数加法的运算定律可以把分母相同的分数先加起来,或凑成整数再计算比较简便。
三、巩固反馈。
1.在下面的○里填上合适的运算符号。
① ○
② ○
2.用简便方法计算下面各题。继续演示课件“整数加法运算定律推广到分数加法”
① ②
3.思考题:
已知 你能很快算出 的和吗?
四、课堂总结。
整数加法的交换律、结合律对分数加法同样适用,应用加法运算定律可以把分母相同的分数先加起来,或凑成整数再计算比较简便。
五、布置作业 .
用简便方法计算下面各题。
六、板书设计
则运算【第四篇】
[教学目标 ]
1.根据加减混合式题的运算顺序,正确地列竖式进行计算。
2.提高学生的计算能力。
3.培养学生良好的书写习惯,激发学生学习数学的兴趣。
[教学过程 ]
1.复习。
(1)用口算卡片进行口算练习。
7+4 12-3 18-9 30+15 44+6 35-10
10-5 9+6 7+7 47-20 58-18 40-30
(2)用竖式计算下面各题:38+25+18 76-29-35
学生完成后,请两名同学板演,教师订正如下:
教师提问:连加、连减的题目按什么顺序计算?
学生回答:连加、连减的题目从左往右依次计算。
教学意图:通过复习,可以使学生做好知识和心理上的准备,为运用迁移学习新知做好铺垫。
2.新授。
(1)教学例3: 68-29+51=
①读题,说说这道题与刚才所做的复习题有什么不同?
学生可做如下回答:复习题是连加、连减,这道题是加减混合式题。
教师可向学生进一步说明,这节课,我们就来学习像这样的。(教师板书课题:加减混合)
②通过对连加、连减的学习,你能用学过的知识独立试做这道题吗?
学生独立试做,并请一名同学板演。
教师订正答案如下:68-29+51=90
教师向学生说明,像这样的加减混合式题也是按从左往右的顺序进行计算,也像连加、连减一样,可以用简便写法列竖式计算。
③列竖式计算下面各题:56+24-30 67-34+39
学生独立完成,教师订正如下:
(2)教学例4: 72-(47+16)=
①读题,说说例4与例3有什么区别?
学生回答:例3是不带小括号的加减混合式题,而例4是带有小括号的混合运算式题。
教师提问:算式中的小括号有什么作用?
学生回答:小括号可以改变算式的运算顺序。
教师进一步提问:小括号怎样改变题目的运算顺序?
学生可做如下回答:没有小括号的算式,按从左到右的顺序计算,有小括号的算式就要先做括号里面的计算,再做括号外面的计算。
②说说例4的运算顺序。
学生回答:先做括号里面的47+16,然后用72减去47+16的和。
③按照刚才所说的运算顺序独立完成例4,要求列两个竖式进行计算,想一想:有没有简便写法?
教师订正答案如下:
72-(47+16)=9
教师说明:由于要先算小括号里面的,这种式题的竖式没有简便写法,只能写两个竖式。
④完成下面两题:33+(55-46) 76-(13+42)
教师订正答案:
说明,在加减混合的运算中,能口算的不用写竖式。
教学意图:这两个例题的教学,全是采用学生试做的方法。学生通过对以往知识的学习,运用知识的迁移完全可以解答这两道题。教师要对学生信任,发挥学生的主体意识。
3.课堂练习。
(1)计算。
(教师订正答案 72 21 98 47 72
31 97 79 82 65)
(2) 把下列计算中不正确的改正过来,想一想错在哪里?
①64-(17 + 28) =19 ②26 + (86 -59 ) =53
教师引导学生分析,第①小题是错的,第②小题是对的,26+27得53,用27+26也得53,交换两个加数的位置和是不变的。而第①题把被减数和减数的位置变换了,这是不正确的,因为被减数是整体,减数是部分。通过比较分析,使学生明确不是任何加减混合的两步式题都能用简便写法来计算。如果括号前面是加法,可以用简便写法;如果括号前面是减法,就不能用简便写法。
教学意图:通过这两组的学习,使学生巩固的方法及竖式的正确写法,加深学生对有小括号的加减混合式题竖式写法的认识。
4.课堂小结。
今天这节课学习了什么内容?你有哪些收获?还有什么问题?
教学意图:通过课堂小结,使学生对所学知识有更清楚的认识,给学生提供总结和质疑的条件与机会,意在发挥学生学习的主动性。
则运算【第五篇】
一、细心填一填(每空2分,共26分)
1. 在没有括号的算式里,如果只有加、减法或只有乘、除法,都要按( )的顺序计算。
2. 在计算83+36×22时,应先算( )法,再算( )法。
3. 在计算48÷3-13时,应先算( )法,再算( )法。
4. 在( )里填上合适的数
59-19+( )=66 ( )×9÷4=18
( )+21-5=71 96÷( )×11=88
5. 下面的图形各代表什么?
(1)☆+☆+☆=18 ☆+◎+◎=22
☆=( ) ◎=( )
(2)□-○=4 ○+○+□+□=20
□=( ) ○=( )
二、慧眼辨一辨(运算顺序一样的画“√”,不一样的画“×”。每题2分,共6分)
三、耐心算一算(每题3分,共18分)
162+34-157 81-35+15
48÷2×16 46×5-21
200-6×14-35 48+92÷2
四、我来做一做(1~4题,每题8分,第5题10分,共42分)
1. 光明小学有女生412人,比男生少30人,光明小学共有学生多少人?
2. 3路公共汽车上原有乘客38人,到东门车站后下车12人,又上来6人。汽车上现在有乘客多少人?
3. 每个计算器88元。
4. 红旗小学组织学生参观科技馆。四年级有5个班,平均每班48人,需要这样的面包车多少辆?
5. 李大爷去世后留下了一处房产,由他的三个儿子共同继承。三个儿子商量后约定:房产留给老三,由老三付给老大和老二共68000元。这处房产价值多少元?
五、把“+”“-”“×”“÷”分别填入下面等式的“○”中,使等式成立(每题4分,共8分)
答案
一、细心填一填
1. 从左到右
2. 乘 加
3. 除 减
4. 26 8 55 12
5. (1)☆=6 ◎=8 (2)□=7 ○=3
二、慧眼辨一辨
1. √ 2. × 3. ×
三、耐心算一算
39 61 384
209 81 94
四、我来做一做
1. 854人
2. 32人
3. 440元
4. 6辆
5. 102000元
五、1. 7×2-4=10÷2+5
2. 12÷6+2=4×2-4。
上一篇:后进生转化工作计划4篇
下一篇:学生复习计划【优推5篇】