排列与组合教学设计【精选10篇】

网友 分享 时间:

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“排列与组合教学设计【精选10篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

排列与组合教学设计【第一篇】

求解排列应用题的主要方法:

直接法:把符合条件的排列数直接列式计算;。

优先法:优先安排特殊元素或特殊位置。

捆绑法:把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列。

定序问题除法处理:对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列。

间接法:正难则反,等价转化的方法。

例1:有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:

(1)全体排成一行,其中甲只能在中间或者两边位置;。

(2)全体排成一行,其中甲不在最左边,乙不在最右边;。

(3)全体排成一行,其中男生必须排在一起;。

(4)全体排成一行,男生不能排在一起;。

(5)全体排成一行,男、女各不相邻;。

(6)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;。

(7)全体排成一行,甲、乙两人中间必须有3人;。

(8)若排成二排,前排3人,后排4人,有多少种不同的排法。

(1)无任何限制条件;。

(2)正、副班长必须入选;。

(3)正、副班长只有一人入选;。

(4)正、副班长都不入选;。

(5)正、副班长至少有一人入选;。

(5)正、副班长至多有一人入选;。

6本不同的书,按下列要求各有多少种不同的选法:

(1)分给甲、乙、丙三人,每人2本;。

(2)分为三份,每份2本;。

(3)分为三份,一份1本,一份2本,一份3本;。

(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;。

(5)分给甲、乙、丙三人,每人至少1本。

例2、(1)10个优秀指标分配给6个班级,每个班级至少。

一个,共有多少种不同的分配方法?

(2)10个优秀指标分配到1、2、3三个班,若名。

额数不少于班级序号数,共有多少种不同的分配方法?

(1)四个不同的小球放入四个不同的盒中,一共。

有多少种不同的放法?

(2)四个不同的小球放入四个不同的盒中且恰有一个空。

盒的放法有多少种?

排列与组合教学设计【第二篇】

1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。

2.培养学生有序地、全面地思考问题的意识和习惯。

1.借助操作活动或学生易于理解的事例来帮助学生找出组合数。师生共同分析练习二十五第1题。让学生小组讨论,充分发表自己的意见。

2.利用直观图示帮助学生有序地、不重不漏地找出早餐搭配的组合数。

3、出示练习二十五第3题。

学生看题后,四人小组讨论出有多少种求组合数的方法。

4、学生汇报。

(1)图示表示法(两种)。引导学生用画简图的方式来表示抽象的数学知识。

(2)其他的方法,例如聪聪或明明分别可以和每一个小朋友合影(分步时,可以把确定聪聪作为第一步,也可以把确定明明作为第一步),教学时充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。

(3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示聪聪,圆形表示明明,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。

(4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。

2.“做一做”

(1)练习二十五第7题。

通过活动的方式让学生不重不漏地把所有取钱的情况写出来。

(2)练习二十五第9题。

用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。

排列与组合教学设计【第三篇】

1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。

2、经历探索简单事物排列与组合规律的过程。

3、培养学生有顺序地全面地思考问题的意识。

4、感受数学与生活的紧密联系,激发学生学好数学的信心。

经历探索简单事物排列与组合规律的过程。

初步理解简单事物排列与组合的不同。

每生准备3张数字卡片,学具袋。

步骤师生活动修改意见设计意图。

(一)创设问题情境:

师:森林学校的数学课上,猴博士出了这样一道题(课件出示)用数字1、2能写出几个两位数?问题刚说完小动物们都纷纷举手说能写成两个数:12、21。接着猴博士又加上了一个数字3,问:“用数字1、2、3能写出几个两位数呢?”小猪站起来说能写成3个,小熊说5个,小狗说7个,到底能写出几个呢?用学生感兴趣的童话故事引入,易于激发起学生探究的兴趣,同时也向学生渗透助人为乐的品德教育。

(二)。

1.自主合作探索新知。

试一试。

师:请同学们也试着写一写,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。

学生活动教师巡视。(学生所写的个数可能不一样,有多有少,找几份重复的或个数少的展示。)引导学生根据自己的实际情况选择不同的方法探究新知,体现了不同的孩子用不同的方式学习数学这一新的教学理念,易于吸引不同层次的学生积极主动的参与到活动中来。

2.发现问题。

学生汇报所写个数,教师根据巡视的情况重点展示几份,引导学生发现问题:有的重复写了,有的漏写了。

引导学生发现写数过程中出现的问题,并就此展开讨论、交流,遵循了学生的.认知特点。学生在交流的过程中体验到解决问题方法的多样性,并根据自己的实际选择不同的方法,尊重了学生的主体地位。在此过程中学生收获的不仅是知识本身,更多的是能力、情感。

3.小组讨论。

学生以小组为单位交流讨论。

4.小组汇报。

汇报时可能会出现下面几种情况:

1、无序的。

2、先写出1在十位上的有12、13;再写出2在十位上的有21、23;再写出3在十位上的有31、32。

3、用数字1、2能写出12、21;用数字2、3能写出23、32;用数字1、3能写出13、31。

4、引导学生及时评价每一种方法的优缺点,使其把适合自己的方法掌握起来。

5.小结。

教师简单小结学生所想方法引出练习内容。

(三)拓展应用。

请你试着摆出其他几种排法。学习的目的是为了应用,让学生自主的选择方法进行练习,有利于培养学生的自主学习的能力。

二、

(一)组合。

故事引入。

师:下课了小狗、小熊、小猪做“找朋友”的游戏,好朋友见面之后要握握手,每两只小动物握一次手,小狗、小熊、小猪一共握几次手?怎样握?用同一条故事主线贯穿整节课的始终,以问题串的形式展开全课,能让学生始终保持浓厚的学习兴趣,充分体验到数学与生活的联系。

(二)探索新知。

学生在充分独立思考的基础上展开小组交流,并3人一组亲身实践一下。

汇报思考的过程。

三、比较。

生可能说用3个数字能写出6个两位数,3只小动物每两人握一次手共握3次。

引导学生明确排列与顺序有关而组合与顺序无关。两只小动物握一次手个?通过比较明确两种问题的同与不同,便于建立起清晰的知识结构,进一步深化学生的认识。

四、拓展应用。

1.小狗要参加学校的时装表演,妈妈为它准备了4件衣服(课件出示2件上衣、2件裤子的图片),请你帮小狗设计一下共有多少种穿法。如果需要的话可以用学具摆一摆。

交流想法。在儿童的生活经验里积累了一些搭配衣服,购物花钱的知识经验,所以学生乐于参与。

2.完成课本99页的第2题。

五、课堂总结。

排列与组合教学设计【第四篇】

1、通过观察与操作,掌握生活中简单事物的排列与组合。

2、培养学生初步的观察、分析以及推理能力,以及有序、全面思考

问题的意识。

3、使学生在数学活动中养成与人合作的良好习惯。

教学重难点:在活动中掌握排列数与组合数的规律及方法。

一、引入:看老师今天带什么来了?今天我们来拍照。

讨论:两个同学站一起拍照时有几种不同的站法?可以拍几张不同的照片?

二、新授:

(一)1、小组讨论:他们三人排成一排照相,可以照出多少张不同的照片?

2、小组汇报讨论的结果。(老师记录在黑板一侧)。

3、问你还有更好的方法让排列的结果既不会重复,又不会遗漏?

4、板书课题:简单排列。

活动2:给三人编上号码:a、b、c你能用这些编码来表他们的排列吗?

小组讨论再汇报结果。

老师总结:按照一定的顺序有序排列可以让排列的结果既不会重复,又不会遗漏

活动3:如果在这三位小朋友中每次选两个人排在一起照相,可以照出多少种不同的照片?

小组讨论再汇报结果。

老师小结学生的结论,并由多媒体演示结果。

如果用字母a、b、c来排列出来,你可以吗?

如果用数字1、2、3来排列出来,你可以吗?

三、巩固练习:

1、课后练习第一题;先由学生独立完成,

适当引导学生按照有规律排列的方法连线完成题目

老师评讲:有序排列的方法连线让比赛的场次既不会重复,又不会遗漏

2、课后练习第三题:(1)他们每两人通一次电话,一共要通话多少次?学生独立完成,提示学生两个人只需要通话一次就满足要求。

(2):如果他们互相寄一张节日贺卡,一共要寄多少张?引导学生分析通电话与寄贺卡的不同,两人互相寄贺卡,需要寄两张才满足要求。

多媒体展示寄贺卡的结果。

3、小组活动:用8、2、5三个数字纸片可以组成不同的三位数,你能组出多少个?

4、人小组按照有序排列的方法用纸片排列出结果,并由小组长记录结果,再汇报。

多媒体演示结果。

思考:用8、0、5三个数字又可以组成多少个不同的三位?

四、小结:今天我们学习了什么内容?你学得开心吗?

排列与组合教学设计【第五篇】

1、利用已有经验认识和了解简单的“排列”,掌握解决问题的策略和方法,体会解决问题策略的多样性。

2、培养初步的观察、分析及推理能力,能有序地、全面地思考问题。

3、尝试用数学的方法来解决生活中的实际问题,感受数学在现实生活中的广泛应用。

培养学生思维的.有序性。

根据需要引导总结计算规律。

多媒体、写有a、b、c的卡片

一、创设情境,激趣导入

师:同学们,我们上学、放学、做操经常排队,你知道吗,排队也有很多有趣的数学问题。今天我们就一起来探讨一下关于排队的问题:排列(板书课题)不只是排队,在我们的生活中处处都有排列,就像我们几个好朋友拍照留念,也蕴含着排列的问题。

二、探究新知

1、简单的排列问题

师:我想给这两位同学合张影,让他们站成一行照相会有几种排列方法?

生2:因为一左一右,可以交换每个人的位置。

师:如果是三个人站成一行拍照,又会有多少种不同的排列方法吗?

你认为怎样排既不重复又不遗漏呢?同学们可以写一写、画一画进行你们独特的创意或排法,看谁想的办法最多最好,好不好?开始。

生2:也可以先把b放在第一的位置,其余两人调换位置,有2种排法;再把b放在第二的位置,a和c再调换位置,有2种排法;最后把b放在第三的位置,a与小c换位置,又有2种排法。这样共有6种排法。

生3:我只想一组就知道了。先把a放在第一的位置,b与c调换位置,有2种排法,依此推想,另两人也分别有2种排法。因此,共有2x3=6种排法。

嗯,你们小组很有创意,非常注意提高自己的学习效率。

师:同学们的想法又多又好,不仅思考得很有条理,并且能清楚

2、先确定位置,再进行简单的排列

生:d同学担任领唱,先确定她的位置,再研究其他三名同学的排列顺序。

然后放手让学生自主解决,通过交流明白排列的规律。

师:完成没有?师:谁来回答一下?

生:我是先固定d的位置,然后排列abc,最后得出了6种排法。同学们有不同意见吗?

生:因为固定了一个同学的位置,其实还是三个人在排队,所以依然是6种。

师:哦,老师明白了,谢谢你的解释。

学生再次小组合作,并进行讨论、交流,老师巡视指导。哪个小组来展示一下你们的成果?

师:你们真聪明,想出了这么多的好方法,而且都说出了自己的道理,希望以后继续下去。

师:刚才通过你们的探索,已经知道了2个人、3个人、4个人排队的方法,如果有5个人排队,会有多少种排法呢?希望同学们课后做一下探索,相信你会有更多的发现!

三、学以致用,拓展提高

1、用8、2、5三个数字,可以组成哪几个不同的三位数?(每个数字只用一次)

2、用0、2、5三个数字,可以组成多少个不同的三位数?(每个数字只用一次)

3、用0、8、2、5四个数字,可以组成多少个不同的四位数?(每个数字只用一次)

4、用1、8、2、5,四个数字,可以组成多少个不同的四位数呢?(每个数字只用一次

四、反思总结,提升认识

通过今天的学习,你有哪些收获?

排列与组合教学设计【第六篇】

1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。

2、经历探索简单事物排列与组合规律的过程。

3、培养学生有序地全面地思考问题的意识。

4、感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学方法解决问题的意识。

经历探索简单事物排列与组合规律的过程。

初步理解简单事物排列与组合的不同。

乒乓球、衣服图片、纸箱、每组三张数字卡片、吹塑纸数字卡片。

一、情境导入,展开教学

今天,王老师要带大家去“数学广角”里做游戏,可是,我把游戏要用的材料都放在这个密码包里。你们想解开密码取出游戏材料吗?(想)我给大家提供解码的3个信息。

1. 好,接下来老师提供解码的第一个信息:密码是一个两位数。(学生在两位数里猜)(你们猜的对不对呢?请听第二个解码信息)

3. 下面,提供解码的第三个信息:刚才说了密码可能是27也可能是72。其实这个密码和老师的年龄有关。哪个才是真正的密码是?(学生说出是27)到底是不是27呢?请看(教师出示密码)。真的是27,恭喜大家解码成功!

二、多种活动,体验新知

1、感知排列

师:请小朋友先到“数字宫”做个排数字游戏,好吗?这有两张数字卡片(1 、2)(老师从密码包里拿出),你能摆出几个两位数?(用数字卡摆一摆)

生:我摆了两个不同的数字12和21。(教师板书)

师:同学们想得真好。我又请来了一位好朋友数字3,现在有三个数字1、2、3,让大家写两位数,你们不会了吧?(会)别吹牛!(真的会)好,下面大家分组合作,组长记录。看看你们能够写出几个不同的两位数,注意不要重复,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。好,开始。

2、探讨排列方法。

方法1:我摆出12,然后再颠倒就是21,再摆23,颠倒后就是32,再摆13,颠倒后就是31,一共可以摆出6个两位数。

方法2:我先把数字1放在十位上,然后把数字2和3分别放在个位组成12和13;我再把数字2放在十位上,然后把数字1和3分别放在个位组成21和23 ;我再把数字3放在十位上,然后把数字1和2分别放在个位上组成31和32 ,一共摆出了6个两位数。

3、老师和学生共同评议方法:让学生选择自己喜欢的方法再摆一摆,学生试着总结。(如果学生说不出方法2,老师就直接告诉学生)

3、感知组合。

师:你们真是一群善于动脑的好孩子。来,咱们握握手,祝贺祝贺!加油!

排列与组合教学设计【第七篇】

1.利用已有经验认识和了解简单的“排列”,掌握解决问题的策略和方法,体会解决问题策略的多样性。

2.培养初步的观察、分析及推理能力,能有序地、全面地思考问题。

3.尝试用数学的方法来解决生活中的实际问题,感受数学在现实生活中的广泛应用。

教学重点:

培养学生思维的有序性。

根据需要引导总结计算规律。

教具:

多媒体、写有a、b、c的卡片。

一、创设情境,激趣导入。

师:同学们,我们上学、放学、做操经常排队,你知道吗,排队也有很多有趣的数学问题。今天我们就一起来探讨一下关于排队的问题:排列(板书课题)不只是排队,在我们的生活中处处都有排列,就像我们几个好朋友拍照留念,也蕴含着排列的问题。

二、探究新知。

1.简单的排列问题。

师:我想给这两位同学合张影,让他们站成一行照相会有几种排列方法?

生2:因为一左一右,可以交换每个人的位置。

师:如果是三个人站成一行拍照,又会有多少种不同的排列方法吗?

教学设计者:承良玉陶辛中心学校电子教学设计。

你认为怎样排既不重复又不遗漏呢?同学们可以写一写、画一画进行你们独特的创意或排法,看谁想的办法最多最好,好不好?开始。

生1:先把a排在第一的位置,其余两个人调换一次位置;再将b排在第一的位置,其余两个人调换一次位置;最后将c排在第一的位置......

生2:也可以先把b放在第一的位置,其余两人调换位置,有2种排法;再把b放在第二的位置,a和c再调换位置,有2种排法;最后把b放在第三的位置,a与小c换位置,又有2种排法。这样共有6种排法。

生3:我只想一组就知道了。先把a放在第一的位置,b与c调换位置,有2种排法,依此推想,另两人也分别有2种排法。因此,共有2x3=6种排法。

嗯,你们小组很有创意,非常注意提高自己的学习效率。

师:同学们的想法又多又好,不仅思考得很有条理,并且能清楚。

2.先确定位置,再进行简单的排列。

生:d同学担任领唱,先确定她的位置,再研究其他三名同学的排列顺序。

然后放手让学生自主解决,通过交流明白排列的规律。

教学设计者:承良玉陶辛中心学校电子教学设计。

师:完成没有?师:谁来回答一下?

生:我是先固定d的位置,然后排列abc,最后得出了6种排法。同学们有不同意见吗?

生:因为固定了一个同学的位置,其实还是三个人在排队,所以依然是6种。

师:哦,老师明白了,谢谢你的解释。

学生再次小组合作,并进行讨论、交流,老师巡视指导。哪个小组来展示一下你们的成果?

师:你们真聪明,想出了这么多的好方法,而且都说出了自己的道理,希望以后继续下去。

教学设计者:承良玉陶辛中心学校电子教学设计。

师:刚才通过你们的探索,已经知道了2个人、3个人、4个人排队的方法,如果有5个人排队,会有多少种排法呢?希望同学们课后做一下探索,相信你会有更多的发现!

三、学以致用,拓展提高。

1、用8、2、5三个数字,可以组成哪几个不同的三位数?(每个数字只用一次)。

2、用0、2、5三个数字,可以组成多少个不同的三位数?(每个数字只用一次)。

3、用0、8、2、5四个数字,可以组成多少个不同的四位数?(每个数字只用一次)。

4、用1、8、2、5,四个数字,可以组成多少个不同的四位数呢?(每个数字只用一次。

四、反思总结,提升认识。

通过今天的学习,你有哪些收获?

文档为doc格式。

排列与组合教学设计【第八篇】

教学目标:

1.利用已有经验认识和了解简单的“排列”,掌握解决问题的策略和方法,体会解决问题策略的多样性。

2.培养初步的观察、分析及推理能力,能有序地、全面地思考问题。

3.尝试用数学的方法来解决生活中的实际问题,感受数学在现实生活中的广泛应用。

教学重点:

培养学生思维的有序性。

教学难点:

根据需要引导总结计算规律。

教具:

多媒体、写有a、b、c的卡片。

教学过程:

一、创设情境,激趣导入。

师:同学们,我们上学、放学、做操经常排队,你知道吗,排队也有很多有趣的数学问题。今天我们就一起来探讨一下关于排队的问题:排列(板书课题)不只是排队,在我们的生活中处处都有排列,就像我们几个好朋友拍照留念,也蕴含着排列的问题。

二、探究新知。

师:我想给这两位同学合张影,让他们站成一行照相会有几种排列方法?

生2:因为一左一右,可以交换每个人的位置。

师:如果是三个人站成一行拍照,又会有多少种不同的排列方法吗?

教学设计者:承良玉陶辛中心学校电子教学设计。

你认为怎样排既不重复又不遗漏呢?同学们可以写一写、画一画进行你们独特的创意或排法,看谁想的办法最多最好,好不好?开始。

生1:先把a排在第一的位置,其余两个人调换一次位置;再将b排在第一的位置,其余两个人调换一次位置;最后将c排在第一的位置......

生2:也可以先把b放在第一的位置,其余两人调换位置,有2种排法;再把b放在第二的位置,a和c再调换位置,有2种排法;最后把b放在第三的位置,a与小c换位置,又有2种排法。这样共有6种排法。

生3:我只想一组就知道了。先把a放在第一的位置,b与c调换位置,有2种排法,依此推想,另两人也分别有2种排法。因此,共有2x3=6种排法。

嗯,你们小组很有创意,非常注意提高自己的学习效率。

师:同学们的想法又多又好,不仅思考得很有条理,并且能清楚。

生:d同学担任领唱,先确定她的位置,再研究其他三名同学的排列顺序。

然后放手让学生自主解决,通过交流明白排列的规律。

教学设计者:承良玉陶辛中心学校电子教学设计。

师:完成没有?师:谁来回答一下?

生:我是先固定d的位置,然后排列abc,最后得出了6种排法。同学们有不同意见吗?

生:因为固定了一个同学的位置,其实还是三个人在排队,所以依然是6种。

师:哦,老师明白了,谢谢你的解释。

学生再次小组合作,并进行讨论、交流,老师巡视指导。哪个小组来展示一下你们的成果?

师:你们真聪明,想出了这么多的好方法,而且都说出了自己的道理,希望以后继续下去。

教学设计者:承良玉陶辛中心学校电子教学设计。

师:刚才通过你们的探索,已经知道了2个人、3个人、4个人排队的方法,如果有5个人排队,会有多少种排法呢?希望同学们课后做一下探索,相信你会有更多的发现!

三、学以致用,拓展提高。

1、用8、2、5三个数字,可以组成哪几个不同的三位数?(每个数字只用一次)。

2、用0、2、5三个数字,可以组成多少个不同的三位数?(每个数字只用一次)。

3、用0、8、2、5四个数字,可以组成多少个不同的四位数?(每个数字只用一次)。

4、用1、8、2、5,四个数字,可以组成多少个不同的四位数呢?(每个数字只用一次。

四、反思总结,提升认识。

通过今天的学习,你有哪些收获?

排列与组合教学设计【第九篇】

教学内容:教学目标:

1、结合日常生活中熟悉的事例,能列举3个事物所有的排列组合结果。

2、通过独立思考,合作交流,逐步感悟数学思想,积累数学经验,了解简单的排列组合思想。

3、初步培养学生有顺序地、比较全面地思考问题的意识。教学重点:在学生已有生活经验下,有条理的列举出所有结果。教学难点:由列举具体结果抽象为数学模式。教学过程:

一、谈话导入。

你们能猜到老师的年龄吗?指名猜一猜。

提示:老师的年龄是由9和2两个数字组成的。引导学生说出一定是29岁。

目的:两个数排列,可能有两种结果,根据生活经验老师的年龄一定是29岁。培养学生要根据生活经验作出选择,同时为下面的的三个事物的排列组合做铺垫。

二、探究3个事物的排列组合结果。

1、这节课我们要玩一个小游戏,不过在玩游戏之前要先把密码输入进去才能知道游戏的名字和规则。

2、出示课件。

密码是由。

1、

2、3这三个数中的两个组成的,你们能猜到吗?

3、猜密码。

(1)你认为密码一定是12吗?

多找几名同学猜密码,得到答案只猜到一个或一部分的密码是不一定正确的。

(2)怎么样才能保证密码一定正确呢?

把所有由这三个数组成的两位数全部找出来。

小组合作,用准备好的数字卡片摆一摆,并作好记录(结果可能有找到6个、5个7个……)一一进行比较,发现有漏掉的,有重复的。

(3)如何才能把所有的可能全部写出来,既不漏掉也不重复呢?

按照一定的顺序来写。

学生自己整理答案,全班展示交流,学生说出自己的方法。可以先确定十位,也可以确定各位,还可以两个一组,调换两个数的位置。

(4)输入密码。

在输入密码时保证不重复不漏掉,要按照一定的顺序输入。

三、由列举具体结果抽象为教学模式。

1、出示游戏规则。

密码找到了,我们来看看要玩什么游戏吧!(课件出示:石头、剪刀、布)每个小组三名同学玩一次石头剪刀布的游戏,分出第一名、第二名、第三名并做好记录。

汇报结果。

2、提问:谁获得了第一名?假如第一名不变,比赛结果会不会有变化?再次游戏,第一名不变,分出第二名和第三名。结果有两种,第一名不变,第二名和第三名,调换位置。

3、小组讨论。

其他人有没有可能获得第一名?(肯定有)。

当1号2号3号同学分别获得第一名的时候,结果会有几种,并全部列举出来。

4、展示结果,并根据结果提问。

5、建构模式。

每个人获得第一名结果都可能有两种,三名同学一共可能有几种结果呢?结果是3个2--------(师板书:3×2=6(种))。

小结:三人比赛,可能有六种结果。我们先确定一个名次,然后把另外的两。

个名次调换位置,就会产生两种不同的结果,三个人就是六种结果。

6、比赛结束拍照。

三个人拍照调换三人的位置可能照出出几种不同的照片?

7、将名次转换成数位,形成三个数的排列可以组成6个不同的三位数。说说方法:先确定百位,把每个数分别放在百位上,再调换另外两个数的位置。

也可以先确定十位,或个位。

四、列举现实生活中三个事物排列组合的例子。

1、读书好本意是读书是一件很好的事。

读好书意为读一些有利于自己身心健康的书或值得自己读的书。好读书意指嗜好读书,爱读书。

板书设计:

不漏掉。

不重复。

3×2=6(种)。

排列与组合教学设计【第十篇】

知识目标:

使学生通过观察、猜测、实验等活动,找出简单事物的排列数和组合数。

能力目标:

培养学生有顺序地、全面地思考问题的意识。

情感目标:

使学生感受到数学在现实生活中的应用价值,尝试用数学的方法来解决实际生活中的问题。

一、创设情境,导入新课

今天,我们来上一节数学活动课,大家乐意吗?(板书课题)现在大家来看一下我们的活动目标。(课件出示活动目标)

师:老师给分享的“排列与组合教学设计【精选10篇】”,课件出示圣诞老人画面,圣诞老人过生日了,想请大家参加他的生日聚会,但是他有要求。通过圣诞老人提出本节课任务。

二、合作学习,构建模型

(一)初步感知。课件出示:

第一关:摆一摆,猜密码。(用数字卡片

1、2能排成几个两位数自己动手摆一摆)让学生自己动手摆卡片后,指名汇报。

(二)合作探究。课件出示:

第二关:摆一摆,比一比(用数字卡片1、2、3能摆成几个不同的两位数)比比看,哪个组找的最多。

小组探讨,组长把大家的讨论结果记录在练习本上。(活动开始,教师巡视。)

以组为单位派代表汇报。

(鼓励方法的多样化,对各组的不同方法进行肯定和表扬。)结合发言,引导学生进行评价,选出优胜组。

师生共同归纳:用数字排列组成数,要按照一定的顺序确定十位上的数,然后考虑个位上有哪些数可以与其搭配。

(三)握一握。课件出示:小精灵说的话。

恭喜你们成功的度过了前两关,现在,我们握手祝贺一下。师:每两人握一次手,三人一共握几次手?(小组活动,教师巡视)活动后,小组指名汇报。

师:究竟是几次呢?请大家互相握握看吧!请一个组的同学上台演示,其他同学一起数数。

(四)课件出示:

师:圣诞老人决定奖励你们两件上衣、两条裤子,那么一共有几种搭配方法呢?(课件出示图片。)

学生拿出学具卡片,小组活动解决问题。汇报交流,说说自己为什么这样设计。

三、分层练习,巩固新知

(一)付钱问题。

课件出示:99页做一做2题

小组讨论,小组长统计本组学生答题情况,并由小组代表汇报。

(二)拍照站法。

小丽、小芳、小美在风景如画的郊外游玩,三人想站成一排拍照留念,她们有几种站法?

小组讨论后,由一组学生上台演示,其他学生数一数。

40 2025138
");