高一数学上册教学计划7篇

文秘 分享 时间:

制定教学目标,安排知识点,结合实际应用,注重课堂互动,强化习题训练,评估学习效果,提升学生综合能力。下面是阿拉网友整理编辑的高一数学上册教学计划相关范文,供大家学习参考,喜欢就分享给朋友吧!

高一数学上册教学计划

高一数学上册教学计划 篇1

一.学情分析

秋季起,湖南省高中新课程实验工作全面启动,我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的A版教材。与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上积极创新,充分体现了数学的美学价值和人文精神。我校是一所普通的高中,在重点高中和私立学校扩招的影响下,我校新生的素质可想而知了。学生基础差,学习兴趣不大,怎样调动学生的学习兴趣是本期在教学中要解决的重要问题。

二.教材分析

本教材有下列几个特点:

1、更加注重强调数学知识的实际背景和应用,使教材具有很强的亲和力,即以生动活泼的呈现方式,激发学生的兴趣和美感,使学生产生对数学的亲切感,引发学生看个究竟的冲动,使学生兴趣盎然地投入学习。

2.以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神,体现了问题性,本套教材的一个很大特点是每一章都可以看到观察思考探索以及用问号性图标呈现的边空等栏目,利用这些栏目,在知识形过过程的关键点上,在运用数学思想方法产生解决问题策略的关节点上,在数学知识之间联系的联结点上,在数学问题变式的发散点上,在学生思维的最近发展区内,提出恰当的、对学生数学思维有适度启发的问题,以引导学生的数学探究活动,切实转变学生的学习方式。

3.信息技术是一种强有力的认识工具,在教材的编写过程体现了积极探索数学课程与信息技术的整合,帮助学生利用信息技术的力量,对数学的本质作进一步的理解。

4.关注学生数学发展的不同需求,为不同学生提供不同的发展空间,促进学生个性和潜能的发展提供了很好的平台。例如教材通过设置观察与猜想、阅读与思考、探究与发现等栏目,一方面为学生提供了一些关于探究性、拓展性、思想性、时代性和应用性的选学材料,拓展学生的数学活动空间和扩大学生的数学知识面,另一方面也体现了数学的科学价值,反映了数学在推动其他科学和整个文化进步中的作用。

5.新教材注重数学史渗透,特别是注重介绍我国对数学的贡献,充分体现数学的人文价值,科学价值和文化价值,激发了学生的爱国主义情感和民族自豪感。

三.教学任务与目的

1.了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。进一步体会函数是描述变量之间的依赖关系的重要数学模型,会用集合与对应的语言描述函数,体会对应关系在刻画函数概念中的作用。了解函数的构成要素,会求简单函数定义域和值域,会根据实际情境的不同需要选择恰当的方法表示函数。通过已学过的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性的含义,会用函数图象理解和研究函数的性质。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、欧拉等)的有关资料,了解函数概念的发展历程。

2.了解指数函数模型的实际背景。理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。知道指数函数y=ax与对数函数y=logax互为反函数(a0,a1)。通过实例,了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=1/x,y=x1/2的图象,了解它们的变化情况。

3.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法.利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用。

4.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的.三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

5以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系。通过对大量图形的观察、实验、操作和说理,使学生进一步了解平行、垂直判定方法以及基本性质。学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题.

6.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。能根据斜率判定两条直线平行或垂直。根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。能用解方程组的方法求两直线的交点坐标。探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

四.教学措施和活动

1.加强集体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功。

2、注重培养学生自主学习的能力,转变学生学习数学的方式。学生是学习和发展的主人,教学中要体现学生的主体地位,增强学生的自我学习,自我教育与发展的意识和能力。改善学生的学习方式是高中数学新课程追求的基本理念。

3、了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率。

4、与学生多沟通、多交流,真正成为学生的良师益友。

5、要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。

五.教学时间大致安排

集合与函数概念13

基本初等函数15

函数的应用8

空间几何体8

点、直线、平面的位置关系10

直线与方程9

圆与方程9

高一数学上册教学计划 篇2

数学是研究现实世界空间形式和数量关系的一门科学。

一、指导思想

准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注意参透教学思想和方法,针对学生实际,不断研究数学教学,改进教法,指导学法。

数学目标要求:

1、理解集合及充要条件的有关知识,掌握不等式的性质,一元二次不等式、绝对值不等的解法,掌握函数的概念及指数函数,对函数和幕函数的性质和图象。

2、理解角的概念的推广和三角函数的定义,掌握基本的三角函数公式和三角函数巅峰性质、图像,理解三角函数的周期性

3、理解数列的概念,掌握等差数列和等比数列的性质,并会求等差数列、等比数列前n项的和。

4、掌握平面向量时有关概念和运算,掌握直线和圆的方程的求法。

5、掌握空间几何直线、平面之间的位置关系及其判定方法。

6、掌握概率与统计初步里的计数原理,理解三种抽样方法,会求简单问题的概率。

二、教学建议

1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练掌握知识和逻辑体系,细致领悟教材改革的精髓,逐步明确教材教学形式,内容和教学目标的影响。

2、准确吧握新大纲。新大纲修改了部分内容的教学要求层次,把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上要重视数学应用;重视教学思想方法的参透。

3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施材,以学生为账户提,构建新的认识体系,营造有利于学生的氛围。

4、发挥教材的多种教学功能。用好章头图,激发学生学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

5、加强课堂研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。职业高中数学教学计划职业高中数学教学计划。发扬教学民主,师生双方亲切合作,交流互动,让学生感受、理解知识的产生和发展的过程。根据材料个章节的重难点制定教学专题,积累教学经验。

6、落实课外活动内容,组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。

三、教学进度(略)

最后,希望小编整理的高一年级数学教学计划对您有所帮助,祝同学们学习进步。

高一数学上册教学计划 篇3

Ⅰ.教学内容解析

本节课的教学内容,是指数函数的概念、性质及其简单应用.教学重点是指数函数的图像与性质.

这是指数函数在本章的位置.

指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数.它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践.指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础.因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程.

指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义.

Ⅱ.教学目标设置

1.学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念.

2.学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小.

3.学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法.

4.在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力.

Ⅲ.学生学情分析

授课班级学生为南京师大附中实验班学生.

1.学生已有认知基础

学生已经学习了函数的概念、图象与性质,对函数有了初步的认识.学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力.学生已有研究一次函数、二次函数等初等函数的直接经验.学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯.

2.达成目标所需要的认知基础

学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力.

3.难点及突破策略

难点:1. 对研究函数的一般方法的认识.

2. 自主选择底数不当导致归纳所得结论片面.

突破策略:

1.教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段.

2.组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思.

3.对猜想进行适当地证明或说明,合情推理与演绎推理相结合.

Ⅳ.教学策略设计

根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式.通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段.

学生的自主学习,具体落实在三个环节:

(1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念.

(2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升.

(3)性质应用阶段,学生自主举例说明指数函数性质的应用.

研究函数的性质,可以从形和数两个方面展开.从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明.

Ⅴ.教学过程设计

1.创设情境建构概念

师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系.你能用函数的观点分析下面的例子吗?

师:大家知道细胞分裂的规律吗?(出示情境问题)

[情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?

[情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%.如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?

[师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=

师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?

〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?

[设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系.引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示.初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构.指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义.为了使指数函数与对数函数能构成反函数,规定a≠1.此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”.

[师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax.

[教学预设]学生能举出具体的例子——y=3x,y=….如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现.进而提出这类函数一般形式y=ax.

方案1:

生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))

师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)

生:函数y=,y= x,y=(-2)x,y=1x…

师:板书学生举例(停顿),好像有不同意见.

生:底数不能取负数.

师:为什么?

生:如果底数取负数或0,x就不能取任意实数了.

师:我们已经将指数的取值范围扩充到了R,我们希望这些函数的定义域就是R.

(若没有学生注意到底数的取值范围,可引导学生关注例举函数的定义域.若有同学提出情境中函数的定义域应为N+,师:我们已经将指数的取值范围扩充到了R,函数y=2x和y=中,能否将定义域扩充为R?你们所举的例子中,定义域是否为R?)

师:这些函数有什么共同特点?

生:都有指数运算.底数是常数,自变量在指数位置.

(若有学生举出类似y=max的例子,引导学生观察,它依然具有自变量在指数位置的特征.而刻画这一特点的最简单形式就是y=ax,从而初步建立函数模型y=ax,初步体会基本初等函数的作用.)

师:具备上述特征的函数能否写成一般形式?

生:可以写成y=ax(a>0).

师:当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)

方案2:

生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))

师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)

生:函数y=,y= x,…

师:这些函数的自变量是什么?它们有什么共同特点?

生:(可用文字语言或符号语言概括)都有指数运算.底数是常数,自变量在指数位置.可以写成y=ax.

师:y=ax中,自变量是x,底数a是常数.以上例子的不同之处,是底数不同.那你觉得底数的取值范围是什么呢?

生:底数不能取负数.

师:为什么?

生:如果底数取负数或0,x就不能取任意实数了.

师:为了研究的方便,我们要求底数a>0.当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)

[阶段小结]一般地,函数y=ax(a>0且a≠1)称为指数函数.它的定义域是R.

[意图分析]概念教学应当让学生感受形成过程,了解知识的来龙去脉,那种直接抛出定义后辅以“三项注意”的做法剥夺了学生参与概念形成的过程.此处不宜纠缠于y=22x是否为指数函数等细枝末节.指数函数的基本特征是自变量出现在指数上,应促使学生对概念本质的理解.指数函数概念的形成,经历了一个由粗到细,由特殊到一般,由具体到抽象的渐进过程,这样更加符合人们的认知心理.

2.实验探索汇报交流

(1)构建研究方法

师:我们定义了一个新的函数,接下来,我们研究什么呢?

生:研究函数的性质.

〖问题2你打算如何研究指数函数的性质?

[设计意图]学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.在此认知基础上,引导学生自己提出所要研究的问题,寻找研究问题的方法.开始的问题较宽泛,教师要缩小问题范围,用提示语口头提问启发.教师应充分尊重学生的思维个性,提供自主探究的平台,通过汇报交流活动达成共识实现殊途同归.中学阶段,特别是高一新授课阶段,提倡学生以形象思维作为抽象思维的支撑.

[师生活动]师生经过讨论,解决启发性提示问题,确定研究的内容与方法.

[教学预设]学生能够根据已有知识和经验,在教师的启发引导下,明确研究的内容以及研究的方法.部分学生会提出先作出具体函数图象,观察图象,概括性质,并进而归纳出一般函数的图象的分布特征等性质.另一部分学生可能从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.

师:(稍等片刻)我们一般要研究哪些性质呢?

生:变量取值范围(定义域、值域)、单调性、奇偶性.

师:(板书学生回答)怎样研究这些性质呢?

生:先画出函数图象,观察图象,分析函数性质.

生:先研究几个具体的.指数函数,再研究一般情况.

师:板书“画图观察”,“取特殊值”

(若没有学生提出从特殊到一般的思路.师:底数a的取值不同,函数的性质可能也会有不同.一次函数y=kx(k≠0)中,一次项系数k不同,函数性质就不同.底数a可以取无数多个值,那我们怎么办呢?)

(若有学生通过对y=2x解析式的分析,得到了性质,并提出从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.师:你的想法也很有道理,不妨试一试.(仍引导学生从具体指数函数图象入手.))

[意图分析]学习的过程就是一个不断地提出问题、解决问题的过程.提出问题比解决问题更重要,给学生提供由自己提出问题、确定研究方法的机会,逐渐学会研究问题,促进能力发展.

(2)自主探究汇报交流

师:我们确定了要研究的对象和具体做法,下面可以开始研究指数函数的性质了.

〖问题3选取数据,画出图象,观察特点,归纳性质.

[设计意图]若直接规定底数取值,对于为什么要以y=2x,y=3x,y=为例,为什么要根据底数的大小分类讨论,缺乏合理的解释,学生对于图象的认识是被动的.若在探究前经讨论确定底数取值,由于学生认知水平的差异,仍可能会造成部分学生被动接受.学生自主选择底数,虽有得到片面认识的可能,但通过讨论交流,学生能相互验证结论,仍能得到正确认识.并且学生能在过程中体会数据如何选择,了解研究方法.

由于描点作图时列举点的个数的限制,学生对x→∞时函数图象特征缺乏直观感受.而且由于所举例子个数的限制,学生对于归纳的结论缺乏一般性的认识.教师应利用绘图软件作出底数连续变化的图象 ,验证猜想.

数形结合、从特殊到一般的思维方法是概括归纳抽象对象的一般思维方法,本节课的重点是通过对指数函数图象性质的研究,总结研究函数的一般方法,应充分发动学生参与研究的每个过程,得到直接体验.

[师生活动]学生选取不同的a的值,作出图象,观察它们之间的异同,总结指数函数的图象特征与函数性质.

[教学预设]学生通过观察图象,发现指数函数y=ax(a>0且a≠1)的性质.教师用实物投影仪展示学生所画图象,学生根据具体函数图象说明具体函数性质.在学生说明过程中,教师引导学生对结论进行适当的说明,进而引导学生归纳一般指数函数的性质.教师引导学生关注列表描点作图的过程,引导学生通过反思过程,并通过动态图象验证猜想,促进学生体会数形结合的分析方法.教师尊重生成,但需引导学生区别指数函数本身的性质与指数函数之间的性质.其中⑥⑦不强加于学生.对于⑥,要引导学生在同一坐标系中画出图象,启发学生观察底数互为倒数的指数函数的图象,先得到具体的例子.对于⑦,在例1第3小题中,会有学生提出利用不同底数指数函数图象解决,可顺势利导,也可布置为课后作业,继续研究.

生:自主选择数据,在坐标纸上列表作图,列出函数性质.

师:(巡视,必要时参与讨论,及时提示任务,待大部分学生有结论后,鼓励学生交流,请学生汇报.)有条理地整理一下结论,讨论交流所得.(同时用实物投影仪展示学生所画图象.若没有投影仪,用几何画板作出图象.)

生:(可能出现的情况)(1)在两个坐标系中画图;(2)所取底数均大于1;(3)两个底数大于1,一个底数小于1;(4)关于y轴对称的两个指数函数.

师:(过程性引导)底数你是怎么取的?你是怎样观察出结论的?在列表过程中,你有什么发现吗?为什么要在两个坐标系中画图?为什么不也取两个底数小于1?

师:(用彩笔描粗图象,故意出错)错在哪里?为什么?

生:指数函数是单调递增的,过定点(0, 1).

师:(引导学生规范表述,并板书)指数函数在(-∞, +∞)上单调递增,图象过定点(0, 1).

师:指数函数还有其它性质吗?

师:也就是说值域为(0, +∞).

生:指数函数是非奇非偶函数.

师:有不同意见吗?

生:当0

(其它预设:

(1)当a>1时,若x>0,则y>1;若x1.

(2)学生画出y=2x和y=3x图象,得出函数递增速度的差异.

(3)画出y=2x和y=图象,得到底数互为倒数的指数函数图象关于y轴对称.)

师:(板书学生交流结果,整理成表格.注意区分“函数性质”与“函数之间的关系”.若有学生试图说明结论的合理性,可提供机会.)大家认为底数a>1或0

[阶段小结] 指数函数y=ax(a>0且a≠1)具有以下性质:

①定义域为R.

②值域为(0, +∞).

③图象过定点(0, 1).

④非奇非偶函数.

⑤当a>1时,函数y=ax在(-∞, +∞)上单调递增;

当0

⑥函数y=ax与y=x (a>0且a≠1)图象关于y轴对称.

⑦指数函数y=ax与y=bx(a>b)的图象有如下关系:

x∈(-∞, 0)时,y=ax图象在y=bx图象下方;

x=0时,两图象相交;

x∈(0,+∞)时,y=ax图象在y=bx图象上方.

[意图分析]通过探究活动,使学生获得对指数函数图象的直观认识.学生观察图象,是对图形语言的理解;根据图象描述性质,是将图形语言转化为符号或文字语言.对函数的理解,是建立在三种语言相互转化的基础上的.在交流汇报过程中,一方面要通过对探究较深入学生的具体研究过程的剖析,总结提升学习方法,优化学习策略;另一方面要关注部分探究意识与能力都薄弱的学生的表现,鼓励他们大胆发言,激励他们主动参与活动,让全体学生成为真正的学习主体.自主探究活动能充分激发学生的相互学习能力,能有效帮助学生突破难点.

3.新知运用巩固深化

(方案一)(分析函数性质的用途)

师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?

师:函数的定义域是函数的基础,是运用性质的前提.值域是研究函数最值的前提.具备奇偶性的函数,可以利用对称性简化研究.指数函数过定点(0, 1),说明可以将常数1转化为指数式,即1=20=30=…那么函数单调性有什么用呢?

生:可以求最值,可以比较两个函数值的大小.

师:那你能举出运用指数函数单调性比大小的例子吗?(提示:既然是运用指数函数单调性,那应该有指数式.)

生:(举例并判断大小.)

师:你考察了哪个指数函数?怎么想到的?(规范表述)

师:以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.(出示例1)

(方案二)

师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?

师:(口述并板书)你能比较32与33的大小吗?

生:直接计算比较.

师:那比较与的大小呢?能不能不计算呢?

生:利用函数y=3x的单调性.

师:能具体说明吗?(引导学生规范表达)我们再试一试.

(出示例1)

【例1】比较下列各组数中两个值的大小:

①,;②_,_;③,

[设计意图] 引导学生运用指数函数性质.对于 32与33的大小比较,学生更可能计算出幂的值直接比较.变式后,学生可能作差或作商比较,转化为比较与1的大小,进而运用指数函数单调性,也可能直接运用单调性.初步运用新知解决问题,注重题意理解,扩大知识迁移,感悟解题方法,达到对新知巩固记忆,加深理解.

[师生活动]学生板演,教师组织学生点评.

[教学预设] ①②两题,学生能运用指数函数单调性解决.②题学生可能得到错误答案,教师可组织相互点评,规范表达,正确运用性质.③学生可能运用不同方法,应给予充分的时间,并在具体问题解决后引导学生总结一般方法.

师:(引导学生规范表达)你考察了哪个指数函数?根据函数的什么性质?

师:(对③的引导)你考虑利用哪个函数?是y=还是y=?这两个函数有什么关联?(引导学生画出图象,从形上提示:图象有什么关联?)

生:它们都过点(0, 1).

师:也就是说,可以将1转化为指数形式,即1==那接下来呢?

生:比较,和1的大小.

师:我们找到了一个比大小的中间量.以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.

【例2】

①已知3x≥,求实数x的取值范围;

②已知 则 x>16

( 4 )若3x>12则 x>4

【设计意图】(1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。通过复习既找准了旧知停靠点,又创设了一种情境,给学生提供了类比、想象的空间,为后续学习做好了铺垫。

温故知新

问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?

等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。

估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“>,b经过怎样的变形得到的,应该应用不等式的哪条基本性质。由学生思考后口答。

【设计意图】对学生进行推理训练,让学生明白,叙述要有根据,进一步提高学生的逻辑思维能力和语言表达能力。

2、你认为在运用不等式的基本性质时哪一条性质最容易出错,应该怎样记住?

【设计意图】及时进行学习反思,总结经验,通过相互评价学习效果,及时发现问题、解决知识盲点,培养学生的创新精神和实践能力。

3.小明的困惑:

小明用不等式的基本性质将不等式m>n进行变形,两边都乘以4,4m>4n,两边都减去4m, 0>4n-4m,即0>4(n-m),两边都除以(n-m),得0>4,0怎么会大于4呢?

小明可糊涂了……聪明的同学,你能告诉小军他究竟错在什么地方吗?同桌讨论。

【设计意图】通过替人排忧解难,强化对不等式三个基本性质的理解与运用,突出重点,突破难点。

4.火眼金睛

①a>2, 则3a___2a

②2a>3a,则 a ___ 0

【设计意图】通过变式训练,加深学生对新知的理解,培养学生分析、探究问题的能力。

课堂小结:

这节课你有哪些收获?有何体会?你认为自己的表现如何?教师引导学生回顾、思考、交流。

【设计意图】回顾、总结、提高。学生自觉形成本节的课的知识网络。

思考题:你来决策

咱们班的王帅同学准备在五、一期间和他的爸爸、妈妈外出旅游。青年旅行社的标准为:大人全价,小孩半价;方正旅行社的标准为:大人、小孩一律八折。若两家旅行社的基本价一样,你能帮王帅同学考虑一下选择哪家旅行社更合算吗?

【设计意图】利用所学的数学知识,解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段。既培养了学生用数学知识解决实际问题的能力,又树立了学好数学的信心。

高一数学上册教学计划 篇4

一、教学内容

高中必修1及必修2的部分教学内容。通过教学,要使学生把数学与实际生活联系起来,掌握必须掌握的基础知识与基本技能,进一步培养学生的数学创新意识,良好个性品质以及初步的辩证唯物主义的观点。指导思想

二、学情及教材分析

高中教学内容深,学生接受起来很困难。所以教师要根据实际情况,面对全体,因材施教,对学习有障碍的学生进行个别辅导。以优待差,发挥学生群体的作用。抓好三类生的教学,促进尖子生,带好中等生,扶好下等生。顺利完成初高中的衔接教学。

三、方法措施

1、本学期我继续采取的教学模式是:四点------学知识点、抓重点、找疑点、攻难点。

学知识点-----学会本节课应该学会的知识点、本单元的知识点、本册的知识点。熟知应掌握的概念、法则、定理、公式等。

抓重点--------抓住本节课本单元本册的的重点。并灵活地运用其中的公式定理法则等学以致用,会做相应的习题,特别是重点习题。

找疑点--------每节课都让学生找出自己的疑问、疑点,教师采取相应的措施帮助学生解疑化难。

攻难点-------对于本节课,本单元的难点及重点,教师要集中精力对学生加强训练,引导学生反复练习,形成数学能力,化解难点。

2、总结学习方法。针对学生接受知识困难、又非常容易遗忘的特点,在教学中最关键的是要总结好学习方法。只有总结好了方法才会学有所获。

3、在教学中面向全体学生,因材施教,加强引导,使学生养成良好的学习习惯,注重培养学生兴趣和主动性。鼓励学生大胆创新,勇于探索。培养学生创新能力和创新意识。努力提高学生成绩。

4、照顾全体学生,提高尖子生;带好中等生;抓住后进生。以优带差,共同提高。不伤害学生的自尊心。让学生快乐地学习。

5、教师千方百计想出最直观的教学方法,把课程讲明白,直到学生弄明白为止。多使用直观简捷的教学方法,注重兴趣教学。

6、根据学生容易遗忘的特点,要及时有效地搞好复习。课前提问抓住重点,每周的自习课搞好一周的复习巩固,做好每个单元的训练。

7、教师一定要有耐心、信心,相信学生会学好的。

高一班数学教学计划(三)

本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。

一、指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

一、教学目标.

(一)情意目标

(1)通过分析问题的方法的教学,培养学生的学习的兴趣。

(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组  研究合作学习中学会交流、相互评价,提高学生的合作意识

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

(二)能力要求  培养学生记忆能力。

(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。

2、培养学生的运算能力。

(1)通过概率的训练,培养学生的运算能力。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的渗透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

高一班数学教学计划(四)

一、指导思想:

使学生学好从事社会主义现代化建设和进一步学习现代科学技术所必需的数学基础知识和基本技能,培养学生的运算能力、逻辑思维能力和空间想象能力,以逐步形成运用数学知识来分析和解决实际问题的能力。要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性,培养学生的科学态度和辨证唯物主义的观点。

二、基本情况分析:

1、4班共 人,男生 人,女生 人;本班相对而言,数学尖子约 人,中上等生约 人,中等生约 人,中下生约 人,差生约 人。

5班共 人,男生 人,女生 人;本班相对而言,数学尖子约 人,中上等生约 人,中等生约 人,中下生约 人,差生约 人。

2、4班在初中升入高中的升学考试中,数学成绩在100’及以上的有 人,80’—99’有 人,60’—79’有 人,40’—59’有 人,40’以下有 人,其中最高分为 ,最低分为 。

5班在初中升入高中的升学考试中,数学成绩在100’及以上的有 人,80’—99’有 人,60’—79’有 人,40’—59’有 人,40’以下有 人,其中最高分为 ,最低分为 。

3、4/5班分别为高一年级9个班中编排一个普高班和一个普高班之后的体育班,整体分析的结果是:

三、教材分析:

1、教材内容:集合、一元二次不等式、简易逻辑、映射与函数、指数函数和对数函数、数列、等差数列、等比数列。

2、集合概念及其基本理论,是近代数学最基本的内容之一;函数是中学数学中最重要的基本概念之一;数列有着广泛的应用,是进一步学习高等数学的基础。

3、教材重点:几种函数的图像与性质、不等式的解法、数列的概念、等差数列与等比数列的通项公式、前n项和的公式。

4、教材难点:关于集合的各个基本概念的涵义及其相互之间的区别和联系、映射的概念以及用映射来刻画函数概念、反函数、一些代数命题的证明、

5、教材关键:理解概念,熟练、牢固掌握函数的图像与性质。

6、采用了由浅入深、减缓坡度、分散难点,逐步展开教材内容的做法,符合从有限到无限的认识规律,体现了从量变到质变和对立统一的辩证规律。每阶段的内容相对独立,方法比较单一,有助于掌握每一阶段内容。

7、各部分知识之间的联系较强,每一阶段的知识都是以前一阶段为基础,同时为下阶段的学习作准备。

8、全期教材重要的内容是:集合运算、不等式解法、函数的奇偶性与单调性、等差与等比数列的通项和前n项和。

四、教学要求:

1、理解集合、子集、交集、并集、补集的概念。了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的术语和符号,能正确地表示一些简单的集合。

2、掌握一元二次不等式的解法和绝对值不等式的解法,并能熟练求解。

3、了解命题的概念、逻辑联结词的含义,掌握四种命题及其关系,掌握充分、必要、充要条件,初步掌握反证法。

4、了解映射的概念,在此基础上理解函数及其有关的概念,掌握互为反函数的函数图象间的关系。

5、理解函数的单调性和奇偶性的概念,并能判断一些简单函数的单调性和奇偶性,能利用函数的奇偶性与图象的对称性的关系描绘图象。

6、掌握指数函数、对数函数的概念及其图象和性质,并会解简单的函数应用问题。

7、使学生理解数列的有关概念,掌握等差数列与等比数列的概念、通项公式、前n项和的公式,并能够运用这些知识解决一些问题。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

六、教学进度安排:

九月份: 集合(2)、子集、全集、补集(2)、交集、并集(2)、集合习题(1)

绝对值不等式(1)、一元二次不等式(2)、不等式习题(1)

逻辑联结词(1)、四种命题(1)、充要条件(1)、习题(1)、

第一章小结与练习(3)

十月份: 映射(1)、函数(2)、单调性奇偶性(3)、反函数(2)、习题(1)

指数(1)、指数函数(3)、对数(2)、对数函数(3)、习题(1)

函数应用举例(2)、第二章小结与练习(3)

十一月份:期中复习与考试(8)、数列(2)、

等差数列(2)、等差数列的前n项和(2)、习题(1)

等比数列(2)、等比数列的前n项和(2)、

十二月份:分期付款等应用(2)、习题(1)

第三章小结与练习(3)、复习(12)

元月份: 期末复习(8)

附:高一数学教学的几点具体措施

1、作业方面:

①课堂作业设置一本;提倡用钢笔书写,一律要求用铅笔、尺规作图,书写规范;墨迹、错误用橡皮擦擦干净,保持作业本整洁;当天布置,当天第二节晚自习之前交(若无晚自习,则第二天早读之前交);批阅用“?”号代表错误,一般点在错误开始处,自觉完成更正;

②每次作业按A、B、C、D四个等级评定,分别得分5、4、3、2,每本作业本完成后自行统计得分并上交科代表审核、教师评定等级,得分90%~98%为优良等级,98%及以上为优秀等级;

③《同步优化设计》及时完成,按进度交阅,自觉订正。

2、考试方面:

①控制考试次数,一般为:月考2次,期中期末统考各1次,期末复习小考2次;

②制好试卷,切合实际,难易适中,目标高考;

③组织好考试,严格考试纪律。

3、兴趣方面:

①组织一次活动、一次竞赛;

②多上一些多媒体课、优质课;

③每两周安排一节课时,由课代表组织4个学生讲课,每人10分钟左右,主要讲解《同步优化设计》上的难题。

4、成绩总评:

①每期总评成绩150分,分为三大项,分值为:考试成绩125分(2次月考各5’、期中15’、期末100’)、平时成绩24分(作业10’、练习8’、2次小考各3’)、自评1分。

②提倡准备笔记本、考试错题更正本,并检查后给予加分5’、2’,其它特别表现给予加分3’。

5、抓好学习常规,提高学习成绩。

高一班数学教学计划(五)

一、指导思想:

(1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。

(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

(3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

(4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

二、学生状况分析

本学期担任高一(1)班和(5)班的数学教学工作,学生共有111人,其中(1)班学生是名校直通班,学生思维活跃,(5)班是火箭班,学生基本素质不错,一些基本知识掌握不是很好,学习积极性需要教师提高,成绩以中等为主,中上不多。两个班中,从军训一周来看,学生的学习积极性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。

二、教材简析

使用人教版《普通高中课程标准实验教科书数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修4有三章(三角函数;平面向量;三角恒等变换)。

必修1,主要涉及两章内容:

第一章 集合

通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。

1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;

2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;

3.理解补集的含义,会求在给定集合中某个集合的补集;

4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;

5.渗透数形结合、分类讨论等数学思想方法;

6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。

第二章 函数的概念与基本初等函数Ⅰ

教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。

1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;

2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;

3.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;

4.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。

必修4,主要涉及三章内容:

第一章 三角函数

通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。

1.了解任意角的概念和弧度制;

2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;

3.了解三角函数的周期性;

4.掌握三角函数的图像与性质。

第二章 平面向量

在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

1.理解平面向量的概念及其表示;

2.掌握平面向量的加法、减法和向量数乘的运算;

3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;

4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。

第三章 三角恒等变换

通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及积化和差、和差化积、半角公式的过程,让学生在经历和参与数学发现活动的基础上,体会向量与三角函数的联系、向量与三角恒等变换公式的联系,理解并掌握三角变换的基本方法。

1.掌握两角和与差的余弦、正弦、正切公式;

2.掌握二倍角的正弦、余弦、正切公式 ;

3.能正确运用三角公式进行简单的三角函数式的化简、求值和恒等式证明。

三、教学任务

本期授课内容为必修1和必修4,必修1在期中考试前完成(约在11月5日前完成);必修4在期末考试前完成(约在12月31日前完成)。

四、教学质量目标

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。

2.提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

五、促进目标达成的重点工作及措施

重点工作:

认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。

分层推进措施

1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。

2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、培养能力是数学教学的落脚点。能力是在获得和运用知识的过程中逐步培养起来的。

在衔接教学中,首先要加强基本概念和基本规律的教学。

加强培养学生的逻辑思维能力和解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、讲清讲透数学概念和规律,使学生掌握完整的基础知识,培养学生数学思维能力 ,抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不同的教材内容选择不同教法,提倡创新教学方法,把学生被动接受知识转化主动学习知识。

6、重视数学应用意识及应用能力的培养。

7、加强学生良好学习习惯的培养

六、教学时间大致安排

集合与函数概念 13 课时

基本初等函数 15 课时

函数的应用 8课时

三角函数 24课时

平面向量 14 课时

三角恒等变换 9 课时

高一数学上册教学计划 篇5

本学期我担任高一班的数学教学,由于学生刚由小学升入初中,好多的习惯还不规范,导致学习水平参差不齐,为了能顺利完成本学期的教学任务,特制定教学计划如下:

一、本学期学情分析:

本学期教学内容与现实生活联系非常密切,知识的综合性也较强,教材为学生动手操作,归纳猜想提供了可能。观察、思考、实验、想一想、试一试、做一做等,给学生留有思考的空间,让学生能更好地自主学习。因此对每一章的教学都要体现师生交往、互动、共同发展的过程。要求老师成为学生数学学习的组织者和引导者,从学生的生活经验和已有的知识背景出发,在活动中激发学生的学习潜能,促使学生在自主探索与合作交流的过程中真正理解和掌握基本数学知识、技能、思想、方法,提高解决问题的能力。开学第一周我对学生的观察和了解中发现少部分学生基础还可以,而大部分学生基础和能力比较差。所以一定要想方设法,鼓励他们增强信心,改变现状。在扎实基础上提高他们解题的基本技能和技巧。

二、教学计划:

(一)掌握学生心理特征,激发他们学习数学的积极性。

学生由小学进入中学,心理上发生了较大的变化,开始要求“独立自主”,但学生环境的更换并不等于他们已经具备了中学生的诸多能力。因此对学习道路上的困难估计不足。鉴于这些心理特征,教师必须十分重视激发学生的求知欲,有目的地时时地向学生介绍数学在日常生活中的应用,还要想办法让学生亲身体验生活离开数学知识将无法进行。从而激发他们学习数学知识的直接兴趣,数学第一章内容的正确把握能较好地做到这些。

(二)努力提高课堂45分钟效率

(1)在教师这方面,首先做到要通读教材,驾奴教材,认真备课,认真备学生,认真备教法,对所讲知识的每一环节的过渡都要精心设计。给学生出示的问题也要有层次,有梯度,哪些是独立完成的,哪些是小组合作完成的,知识的达标程度教师更要掌握。同时作业也要分层次进行,使优生吃饱,差生吃好。

(2)重视学生能力的培养

初一的数学是培养学生运算能力,发展思维能力和综合运用知识解决实际问题的能力,从而培养学生的创新意识。根据当前素质教育和新课改的的精神,在教学中着重对学生进行上述几方面能力的培养。充分发挥学生的主体作用,尽可能地把学生的潜能全部挖掘出来。

(三)加强对学生学法指导

进入中学,有些学生纵然很努力,成绩依旧上不去,这说明中学阶段问题已成为突出问题,这就要求学生必须掌握知识的内存规律,不仅要知其然,还要知其所以然,以逐步提高分析、判断、综合、归纳的解题能力,我要求学生养成先复习,后做作业的好习惯。课后注意及时复习巩固以及经常复习巩固,能使学过的知识达到永久记忆,遗忘缓慢。

三、加强集体备课:

与本组的其他教师加强集体备课,突显集体的优势,作到进度统一。

高一数学上册教学计划 篇6

一、基本情况分析

任教153班与154班两个班,其中153班是文化班有男生51人,女生22人;154班是美术班有男生23人,女生21人,并且有音乐生8人。两个班基础差,学习数学的兴趣都不高。

二、指导思想

准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

三、教学建议

1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

5、加强课堂教学研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。教研组要根据教材各章节的重难点制定教学专题,每人每学期指定一个专题,安排一至二次教研课。年级备课组每周举行一至二次教研活动,积累教学经验。

6、落实课外活动的内容。组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。

四、教研课题

高中数学新课程新教法

高一数学上册教学计划 篇7

一、基本情况分析

任教153班与154班两个班,其中153班是文化班有男生51人,女生22人;154班是美术班有男生23人,女生21人,并且有音乐生8人。两个班基础差,学习数学的兴趣都不高。

二、指导思想

准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

三、教学建议

1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

5、加强课堂教学研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。教研组要根据教材各章节的重难点制定教学专题,每人每学期指定一个专题,安排一至二次教研课。年级备课组每周举行一至二次教研活动,积累教学经验。

6、落实课外活动的内容。组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。

四、教研课题

高中数学新课程新教法。

五、教学进度

略。

40 3867838
");