教学设计原理说课稿热选(优质8篇)
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“教学设计原理说课稿热选(优质8篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
教学设计原理说课稿【第一篇】
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、通过操作发展学生的类推能力,形成比较抽象的数学思维。
3、通过“抽屉原理”的灵活应用感受数学的魅力。
经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
一、问题引入。
1、游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。
2、讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?
游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。
引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
二、探究新知。
(一)教学例1。
师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。
板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。
问题:
(1)“总有”是什么意思?(一定有)。
(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)。
学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)。
总结:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。
2、完成课下“做一做”,学习解决问题。
问题:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?
(1)学生活动—独立思考自主探究。
(2)交流、说理活动。
引导学生分析:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。
总结:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。
(二)教学例2。
(留给学生思考的空间,师巡视了解各种情况)。
2、学生汇报,教师给予表扬后并总结:
总结1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。
总结2:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。
问题:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?用“商+2”可以吗?(学生讨论)。
引导学生思考:到底是“商+1”还是“商+余数”呢?谁的'结论对呢?(学生小组里进行研究、讨论。)。
总结:用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。
师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
(三)学生自学例题3并进行自主交流,试着用手中的用具模拟演示场景。
三、解决问题。
四、全课小结。
教学设计原理说课稿【第二篇】
教材简析:
《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。
学情分析:
六年级学生的.逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。激趣是新课导入的抓手,喜欢和好奇心比什么都重要,游戏,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。
1、使学生初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。
2、使学生经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。
3、使学生通过“抽屉原理”的灵活应用感受数学的魅力;提高解决问题的能力和兴趣。
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
一、课前游戏,导入新课。
游戏请5名同学到前面来,老师这有4张凳子,老师喊123开始,要求每位同学都必须坐在凳子上,引导:5位同学坐在4张椅子上,不管怎么坐,总有一把凳子上至少坐两个同学。
我们刚才做了个小游戏,但小游戏蕴含着一个有趣的数学原理。今天我们就来研究这个有趣的数学原理――抽屉原理。
二、通过操作,探究新知。
(一)活动一。
1、出示题目:把4根小棒,放在3个杯子里,怎么放?有几种不同的放法?
(板书:小棒4杯子3)。
提出要求:把所有的摆法都摆出来,看看你会有什么发现?
(1)同桌之间互相合作,动手摆,把各种情况记录下来。
(3)引导学生观察发现:不管怎么放,总有一个杯子里至少有2根小棒。(板书:总有一个杯子里至少有)。
(4)师生共同理解“总有”“至少”有2枝什么意思?
(5)明确:刚才同学们把所有摆法一一列举出来,得到了这样的结论,我们称之为“枚举法”。
2、要把6根小棒放进5杯子里,你感觉会有什么结果呢?
(1)启发学生猜想结果。
把6根小棒放入五个杯子里,你感觉一下,不要动手摆,你感觉一下会有什么样的结论?
(2)引导学生选择合适的方法。
提出要求:想一个快速而又简单的方法,只摆一种情况,你就可以得到这个结论?
(3)学生尝试操作验证。
(4)全班交流,操作演示。
预设:如遇到每个杯子摆两根,有的杯子空的,这样有说服力吗?有的杯子还空着,要先把每个杯子都装上小棒才行。
(5)明确结论:把6根小棒放进5个杯子里,不管怎么放,总有一个杯子里至少有2枝小棒。
3、课件出示:
把100根小棒放进99个杯子呢?
谈话:要不要也准备100根小棒和99根杯子呢?可以怎么办?
引导用假设法进行思考:假设每个杯子放1跟,99个杯子,就已经放了99根,还有1根不管怎么放,总有一个杯子至少有2根小棒。
这也是数学中一种很重要的方法“假设法”。
引导学生观察小棒数和杯子数,你有什么发现?
明确:这里的小棒数都比杯子数多1,当小棒数比杯子数多1时,总有一个杯子至少放了两根小棒。
(二)活动二。
谈话:接下来,我们把数学书当做物体数放入抽屉里,看看又有什么发现?
课件出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
板书:书抽屉总有一个抽屉放入算式。
5235÷2=2……1。
教学设计原理说课稿【第三篇】
加涅对学习结果进行了分类,提出了五种学习结果:言语信息、智力技能、认知策略、动作技能和态度。
1、智慧技能。加涅认为,智慧技能的实质是人们应用符号办事的能力。可以细分为四个亚类:由简单到复杂分别是辨别、概念、规则和高级规则。最简单的智慧技能是辨别,即区分物体差异的能力。较高一级的智慧技能是概念。即对同类事物的共同木质特征的认识。因此而有对事物作出分类的能力。再上去是规则。当规则支配人的行动时,我们便说,人在按规则办事。运用概念、规则办事的能力就是技能的木质。最高级的智慧技能是高级规则,是指运用简单规则解决复杂问题的能力。
2、认知策略。
加涅认为认知策略是一种特殊的智慧技能,它与智慧技能的区别是:智慧技能是个体学会使用符号与环境发生作用,是处理外部世界的能力,而认知策略是对内组织的技能,它的功能是调节监控概念和规则的使用,是处理内部世界的能力,是个体对认知过程进行调节与控制的能力。认知策略使用的先决条件是具备相应的智慧技能。
3、言语信息。
杂程度,加涅区分出二类不同的言语信急形式:符号学习、事实学习、有组织的言语信息的学习。
4、动作技能。
加涅认为.动作技能有两个成分:一是操作规则,一是肌肉协调能力。动作技能的学习就是使一套操作规则支配人的肌肉协调。是指个体不仅仅完成某种规定的动作,而且指这些动作组织起来构成流畅、合规则和准确的整体行为。
5、态度。
加涅认为态度是一种能够影响人对某一类物、某一类事或某一类人作出个人选择的内部状态。它是通过学习而建立起来的一种影响人选择自己行动的内部状态。态度包括认知、情感和行为二种成分。
加涅认为,“学习是人的倾向或能力的改变”。因此,“学习结果是使人的。
各种作业成为可能的持久状态”。“为了强调这些状态具有习得的持久性质,可以管它们叫做能力和倾向”。由于预期的学习结果也就是教育所要达到为目标,所以,加涅揭示了习得的是能力和倾向,便为他的教育目标分类确定了统一的基点。2.以习得各种能力所需学习条件的异同作为划分教育目标类别的依据加涅认为,不同种类的习得结果需要不同的学习条件。包括内部和外部的学习条件。内部学习条件是指学习者本身具有的,影响习得新能力的变量。诸如己经习得的能力等。外部学习条件是指由教学提供的,用以支持或加强习得能力的变量。诸如,教师的期待,教师创设的教学情境等。从内部学习条件来看,不同种类的学习结果需要不同的内部学习条件。比如,学习者要习得定义概念,必须先具有具体概念。从外部学习条件来看,不同种类的学习结果也需要不同的外部学习条件。比如,仅用口头指导来促进运动技能的学习之无效果是众所周知的事。
3.把智慧技能分成由多个层次组成的阶梯。
精心设计的学习的外部条件系统。这一思想正在改变人们对教学及教学设计的传统看法。加涅的学习结果分类的研究不仅为我们提供了一个新的视角,而且还为我们提供了教学设计的原则、方法、技术与依据。对此我们应当虚心接受用其所长。
教学设计原理说课稿【第四篇】
教科书第68、69页例1、2。
1、使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。
2、能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。
教学重点:分配方法。
教学难点:分配方法。
教学方法:列举法分析法。
学习方法:尝试法自主探究法。
教学用具:课件。
一、定向导学(3分)。
(一)游戏引入。
1、游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。
2、讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?
游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。
引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
(二)揭示目标。
理解并掌握解决鸽巢问题的解答方法。
二、自主学习(8分)。
1、看书68页,阅读例1:把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?
(1)理解“总有”和“至少”的意思。
(2)理解4种放法。
2、全班同学交流思维的过程和结果。
3、跟踪练习。
68页做一做:5只鸽子飞回3个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?
(1)说出想法。
如果每个鸽舍只飞进1只鸽子,最多飞回3只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。
(2)尝试分析有几种情况。
(3)说一说你有什么体会。
三、合作交流(8)。
1、出示例2。
把7本书放进3个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?(1)合作交流有几种放法。
不难得出,总有一个抽屉至少放进3本。
(2)指名说一说思维过程。
如果每个抽屉放2本,放了6本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。
2、如果一共有8本书会怎样呢10本呢?
3、你能用算式表示以上过程吗?你有什么发现?
7÷3=2……1(至少放3本)。
8÷3=2……2(至少放4本)。
10÷3=3……1(至少放5本)。
4、做一做。
11只鸽子飞回4个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?
四、质疑探究(5分)。
1、鸽巢问题怎样求?
小结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。
2、做一做。
69页做一做2题。
五、小结检测(10)。
(一)小结。
鸽巢问题的解答方法是什么?
物体的数量大于抽屉的数量,总有一个抽屉里至少放进(商+1)个物体。
(二)检测。
1、填空。
(1)7只鸽子飞进5个鸽舍,至少有()只鸽子要飞进同伴的鸽舍里。
(2)有9本书,要放进2个抽屉里,必须有一个抽屉至少要放()本书。
(3)四年级两个班共有73名学生,这两个班的学生至少有()人是同一月出生的。
(4)任意给出3个不同的自然数,其中一定有2个数的和是()数。
2、选择。
3、幼儿园老师准备把15本图画书分给14个小朋友,结果是什么?
六、作业(6分)。
完成课本练习十二第2、4题。
板书。
物体的数量大于抽屉的数量,总有一个抽屉至少放进(商+1)物体。
教学设计原理说课稿【第五篇】
一.教学与教授:教授仅仅是教学的一部分。教一词指的是一个人想学习者讲授或者掩饰某些东西。但是教师或培训者的角色包括多种不同的任务,如选择材料,判断学生的准备情况,监控教学活动,最终起到内容资源与学习促进的作用,于是更广泛的术语“教学”讲强调的重点放在了教师用来使学生参加到学习活动中去的完整的活动范围。
学习活动的设计与选择。
2.学习是一个手许多变量影响的复杂过程。卡罗尔界定了至少五个影响学生所能达到。
计备用练习形式、评价与反馈。6.不同类型的学习结果需要不同类型的教学。
练习。
3.强化原理:一个新的行为,倘若在他出现时有一个令人满意的事态随其后,则这一。
新的需变更为的学习讲得到增强。四.教学系统设计的的基本过程(addie模型):包括五个基本过程分为,分析、设计、开发、实施、评价。
五.言语信息:
分类:名称的学习—-指获得以命名方式对客体或客体类别做出一致语言反应的性能。
事实的学习—-事实是表示俩个或多个有名字的客体或事件之间关系的言语陈述。六.知识:当信息被组织成有意义的,相互练习的事实和概括化的内容时,通常被称为“知识”。
七.学习目标的三个维度:1)知识目标;2)能力目标;。
3)情感目标;。
章节小结。
第一章教学设计导论加涅在本章中认为教学设计具有系统性,因为在教学设计的每一个决策点上都要注意技术知识的一致性和相容性,他认为每一阶段的输出都是下一阶段的输入,这具有明显的控制论的特点,反映出信息加工理论受到计算机科学影响的特征。
第二章设计教学系统加涅首先给教学系统下了一个定义:促进学习的资源和步骤的安排,这与教育技术94定义中的“学习资源和过程”恐怕有密切联系。随后,加涅指出教学系统设计是计划教学系统的系统过程,而教学开发是执行计划的过程。
第四章学习的类型------智慧技能与策略本章从教育系统预期结果目标开始,然后提出为了设计特定教程、单元和课,需要讲表现性目标分成几大类:智慧技能、认知策略、言语信息、动作技能和态度。这样做有利于:考虑目标的充分性;决定教学顺序;计划成功的教学所需要的学习条件;第五章学习的类型------信息、态度和动作技能本章描述了三种不同类型的学习:言语信息、态度和动作技能。尽管它们有一些公共特征,但事实上它们是各不相同的。1.言语信息:能用言语陈述的事实。概括性知识和有组织的知识。2.态度:选择个人行为的方向。3.动作技能:执行身体运动的行为表现。
第六章学习者影响新的教学材料学习的学习者特征表现为人类记忆中的集中组织。智慧技能、任职策略、言语信息、态度和动作技能这五种习得的性能直接影响这五种新的性能的学习。另一类记忆组织被表征为能力,可通过心理测验来测量。这些是对人类品质的测量,而人类的品质又能预测不同个体完成行为表现的某一些一般类型的情况。人类学习者的其他特征可归为特质。能力和特质以简介方式影响新的学习。
第八章学习任务分析任务分析指集中不同的、相互联系的程序,执行这些程序是为了产生设计和确定教学条件所需的系统信息。信息加工分析描述了学习者在执行他们的学习任务时所采取的步骤,这些步骤包括:1.输入信息2.行动3.决策。学习任务分析的目的是确定重点目标和使能目标的先决条件。区分了联众先决条件----必要性的和支持性的。必要性先决条件是所习得性能的组成成分,因而其学习必须事先进行。其他的先决条件是某个性能的学习更容易或更迅捷,从这个意义上说,他是支持性的。
第九章设计教学顺序本章开头描述了一个完整的教程的组织如何安排教学顺序的问题联系起来。排序决策是在教程、客体、课和课的组成部分这四种水平上出现的。列出了在教程和课题水平决定教学顺序的方法。课题顺序的教程计划主要通过一种茶馆是性逻辑来完成。一个课题可能要先于另一个课题,或者因为它描述了较早的事件,或者因为他是一个组成部分,或者因为它给后继的内容提供了一个有意义的背景。
起对先决性的学习回忆4.呈现刺激材料5.提供学习指导6.引出行为表现7.提供行为表现正确性的反驳8.测量行为表现9.促进保持和迁移。
第十一章技术-----潜在用途本章讨论了技术,尤其是互联网如何影响我们的学校、工业部门、联邦政府与军事部门中的培训过程、结果与学习结果。
第十二章单节课的设计本章将备课作为如下主要活动的完成来对待:1.在教程、单元或主题的范围内安排可得顺序,2.设计单节课,使学习的有效条件能被纳入到每节课的教学事件中。讨论了备课的四个步骤:1.列出课的目标2.列出想使用的教学事件3.选择能完成事件的媒体、材料和活动4.注意教师、培训者和设计者的作用。
第十三章测量学生的行为表现本章的重点是采用标准参照解释的目标参照测验。这种测验有以下几个重要目的:1.它们表明每个学生是否掌握了目标,并可以继续学习下一个目标2.它们允许及早发现和诊断学习失败,这样有助于识别所需要的补救性学习3.他们提供了改进教学本身的信息4.它们是公平的评价,因为它们测量了目标上的行为表现,而这一行为表现是作为期望学生学习的指标而呈现给学生的。
第十四章集体学习环境本章讨论了三种不同的集体规模:1.俩人组2.有3~8名学生的小组3.有15名或更多学生的大组。而适用与这三种不同规模集体的教学特点取决于教师管理教学事件的准确度。
第十五章在线学习本章讨论了最有效的在线学习计划包括如下问题:1)教员的利用2)做中学3)合作4)通达全世界。
第十六章教学评价本章讨论了教学材料、教程与课程的全面评价至少要包括以下五个调查和反馈领域:1.对教学材料的评价2.对教学系统设计过程的质量检查3.测量学习者对教学的反应4.测量学生在学习目标上的成绩5.估计教学效果。
读后感。
加涅在本书中提出教学设计是教育技术的核心,我想这个说法我们都已经非常的清楚,但是究竟我们应该怎样对教育技术学下一个准确的定义,我们应该如何去具体深刻的理解教育技术学作为一门学科它的真正意义。至今为止我听过的最多的回答就是教育技术是指通过技术手段来促进教学且这个技术手段基本是与媒体,信息技术相关的硬技术。可能这是国内好多专家和学者都认同的观点吧,但是加涅在这本书中给我们定义了一个等式:教学设计+教育技术=教育技术学,他讲到教育技术学可以被定义为将理论和其他有组织的知识在教学设计和开发任务中的系统运用,它还包括探求有关人们如何学习和如何最好地设计教学系统和材料的新知识。他所认为的教育技术学更多的类似于国内教学论和课程论研究的范畴。我国教育技术学发展起步较晚,而且一些基本的理论都是吸取国外的专家的,但是毕竟东西方不只是在文化经济等上有差异,在教育方面都是有很大的差异的,所以我国的教育技术学是在汲取了国外的理论的基础上又结合了本国教育的特色以及技术方面的发展情况而最终形成的。
其次,加涅在绪论中认为教学设计具有系统性,因为在教学设计的每一个决策点上都要注意技术知识的一致性和相容性,这一点在我们曾经学过的《教学系统设计》(何克抗主编,北京师范大学出版社)的题目中就可以得出,这本书之所以成为“教学系统设计”而不是“教学设计”,就是吸取了加涅认为的教学设计具有系统性的观点,他认为每一阶段的输出都是下一阶段的输入,这具有明显的控制论的特点,反映出信息加工理论受到计算机科学影响的特征。
得的,有些是在发展中形成的。学生的先天素质是由遗传决定的与学习相关的个体的某些素质,学生在发展中形成的素质包括能力和人格特质,学生后天习得的素质就是加涅总结出的五类学习结果。因为学生的先天素质不能被教学所改变,教学只能避免超越它们,而发展中形成的两类素质,由于具有相对稳定性,教学只能适应它们,因此素质教育是对学生习得的五类的素质教育。在我国流行的教育理论中,为区分作为教育目标的学习结果和自然发展中形成的素质,把教育目标针对个体在自然发展中形成的智力和人格特质。教育理论和实践中的许多误区正值得我们认真反思。?第四,加涅是通过对学习发生的过程及学习发生所需要的内、外部条件来研究教学的,他认为教学是通过安排一系列符合学习者内部条件和外部条件(事件)来促使学习的发生,这正是他对于教学理论的贡献。他的教学理论是建立在坚实的心理学研究基础上,具有更强的可靠性和更具体的指导性。加涅认为学习的行为是千差万别的,千差万别的学习行为都可以归入上述五类习得的学习结果中。每类学习的行为表现不同,所需的内部条件和外部条件也不同。因此,我们应针对不同类型的学习进行教学设计,包括确定目标、任务分析、教学过程及结果测评。
第五,加涅提出了“学习层级”这样一种新的研究体系,由此提出了新的教学论体系,并在这些工作的基础上提出了完整的教学设计原理与技术。我们设计智慧智能序列时要以学习层次为基础,这些层次是通过从终点目标倒推的方式获得的,这样做我们就能分析将要学习的技能序列,当学习者能够回忆出构成新技能的子技能时,它们就会最顺利的完成新技能的学习。
教学设计原理说课稿【第六篇】
《鸽巢原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解“鸽巢原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢原理”加以解决。
“鸽巢原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“鸽巢原理”。教学中应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“鸽巢原理”解决问题带来的乐趣。
激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“魔术游戏”,让学生置身游戏中开始学习,为理解鸽巢原理埋下伏笔。通过小组合作,动手操作的探究性学习把鸽巢原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。
1、知识与技能:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。
2、过程与方法:通过操作发展学生的类推能力,形成比较抽象的数学思维。
3、情感与态度:通过“鸽巢原理”的灵活应用感受数学的魅力。
重点:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。
难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。
同学们,你们喜欢魔术吗?今天,老师也给大家变一个魔术,请5名同学参加这个游戏。
这是一副54张的扑克牌,我取出大小王,还剩52张,你们5人每人随意抽取一张,我知道至少有2张牌是同一花色的,你信吗?让我们带着疑问见证奇迹!
在这个游戏中蕴含着一个有趣的数学原理叫做鸽巢原理,这节课我们就一起来研究鸽巢原理。(板书课题)。
(一)活动一:
1、研究3枝铅笔放进2个文具盒。
(1)要把3枝铅笔放进2个文具盒,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。
(2)反馈:两种放法:(3,0)和(2,1)。
(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)。
(4)“总有”什么意思?(一定有)。
(5)“至少”有2枝什么意思?(不少于2枝)。
小结:在研究3枝铅笔放进2个文具盒时,同学们表现得很积极,发现了“不管怎么放,总有一个文具盒放进2枝铅笔。
(二)活动二:
2、研究4枝铅笔放进3个文具盒。
(1)要把4枝铅笔放进3个文具盒里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。
(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
(3)从四种放法,同学们会有什么发现呢?(总有一个笔盒至少有2枝铅笔)。
(4)你能用更直接的方法,只摆一种情况,就能得到这个结论呢?(每个文具盒都先放进一枝,还剩一枝不管放进哪个文具盒,总会有一个文具盒至少有2枝笔)(你真是一个善于思想的孩子。)。
(5)这位同学运用了假设法来说明问题,你是假设先在每个文具盒里放1枝铅笔,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)。
3、研究铅笔比文具盒多1的情况。
活动3、
类推:把5枝铅笔放进4个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把6枝铅笔放进5个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
总结规律从刚才我们的探究活动中,你有什么发现?(只要放的铅笔比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。)。
深入研究活动4、
如果铅笔数比文具盒数多2呢?多3呢?是不是也能得到结论:“总有一个笔盒至少有2枝铅笔。”
问题:把6枝铅笔放在4个文具盒里,会有什么结果呢?
下面请你猜一猜:
1)如果把6个苹果放入4个抽屉中,至少有几个苹果被放到同一个抽屉里呢?
2)如果把8个苹果放入5个抽屉中,至少有几个苹果被放到同一个抽屉里呢?
你发现了什么规律?
介绍资料经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。“鸽巢原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
小结:从以上的学习中,你有什么发现?你有哪些收获呢?(在解决抽屉原理时,我们可以运用假设法,把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。)。
做一做:
1)7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个佶舍里。为什么?
2)8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。为什么?
(先让学生独立思考,在小组里讨论,再全班反馈)。
3)揭穿谜底:
教学设计原理说课稿【第七篇】
1.通过再次学习统计,感知数学在生活里的作用。
2.经历数据的整理过程,再次认识统计表,获得统计的结果。理解和掌握复式统计表。
3.在合作与交流的学习中,学会肯定自己和倾听他人的意见。
教学流程。
一、提供质疑,唤起意识。
师:学校读书节你读了那么书,要知道同学们最喜欢那些书,我们怎么办?
生:统计……。
师:具体方法?
生答。
二、提供探索,激活意识。
1.动手实践、自主探索。
(1)分类理一理。
师:怎么整理?
生说。
指名学生到黑板前分类整理,哪种方法比较好?通过比较,学生再熟知方法。
师:分类后一个对一个地排好,是“分类理一理”。
(2)语言描述。
看了这张图你能告诉你什么呢?请你和同桌说一说,同桌在说的时候,你要仔细听,听听他说的是否和你说的一样。(学生互相说。)。
刚才同学们交流得很认真,现在谁能站起来响亮地说给大家听。
像这样整理有什么好处?
2.独立操作、体会过程。
师:航模组各多少人,怎么整理制表?
学生汇报分类分享的“教学设计原理说课稿热选(优质8篇)”,并让学生说说从表中知道了什么?先同桌说,再指名说。
三、联系生活实际应用1、用所学“统计”知识选出同学最喜欢哪几门功课?
师:请同学利用我们所学的统计知识选出我们班喜欢的功课是什么?然后完成你手上的统计表和统计图。
师:要完成这个统计,你们会用什么方法来收集数据呢?
生答。
四、课堂小结师:通过本节课的学习,你有那些收获?你还对老师或者同学说些什么吗?
反思。
学生是学习的“主人”,新课程要求遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。《统计》这一课意在让学生主动地参与数学活动,并通过亲手实践,经历和体会整理简单数据的过程,理解统计的思想和方法。
统
将本文的word文档下载到电脑,方便收藏和打印。
教学设计原理说课稿【第八篇】
《义务教育课程标准实验教科书·数学》六年级下册。
让学生初步了解简单“抽屉原理”,教材借助把4枝铅笔放进3个文具盒中的操作情景,介绍了较简单的“抽屉原理”,通过用“抽屉原理”解决简单的实际问题,初步感受数学的魅力。主要培养学生的思考和推理能力,让学生初步经历“数学原理”的过程,提高学生数学应用意识。
教材借助把4枝铅笔放进3个文具盒中的操作情景,介绍了较简单的“抽屉原理”。学生在操作实物的过程中可以发现一个现象:不管怎么放,总有一个文具盒里至少放进2枝铅笔,从而产生疑问,激起寻求答案的欲望。为了解释这一现象,教材呈现了枚举。
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
每组都有3个文具盒和4枝铅笔。
教师:同学们,你们在电脑上玩过“电脑算命”吗?“电脑算命”看起来很深奥,只要报出你的出生的年、月、日和性别,一按键,屏幕上就会出现所谓性格、命运、财运等。通过今天的学习,我们掌握了“抽屉原理”之后,你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不能信的鬼把戏。
教师:通过学习,你想解决那些问题?
师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1)。
生:不管怎么放,总有一个盒子里至少有2枝笔?
师:是这样吗?谁还有这样的发现,再说一说。
师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)。
师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。
(4,0,0)(3,1,0)(2,2,0)(2,1,1),
师:还有不同的放法吗?
生:没有了。
师:你能发现什么?
生:不管怎么放,总有一个盒子里至少有2枝铅笔。
师:“总有”是什么意思?
生:一定有。
师:“至少”有2枝什么意思?
生:不少于两只,可能是2枝,也可能是多于2枝?
师:就是不能少于2枝。(通过操作让学生充分体验感受)。
学生思考——组内交流——汇报。
师:哪一组同学能把你们的想法汇报一下?
组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。
师:你能结合操作给大家演示一遍吗?(学生操作演示)。
师:同学们自己说说看,同位之间边演示边说一说好吗?
师:这种分法,实际就是先怎么分的?
生众:平均分。
师:为什么要先平均分?(组织学生讨论)。
生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?
师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)。
师:哪位同学能把你的想法汇报一下,
生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把6枝笔放进5个盒子里呢?还用摆吗?
生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把7枝笔放进6个盒子里呢?
把8枝笔放进7个盒子里呢?
把9枝笔放进8个盒子里呢?……。
你发现什么?
生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。
1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
(留给学生思考的空间,师巡视了解各种情况)。
2.学生汇报。
生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。
板书:5本2个2本……余1本(总有一个抽屉里至有3本书)。
7本2个3本……余1本(总有一个抽屉里至有4本书)。
9本2个4本……余1本(总有一个抽屉里至有5本书)。
师:2本、3本、4本是怎么得到的?生答完成除法算式。
5÷2=2本……1本(商加1)。
7÷2=3本……1本(商加1)。
9÷2=4本……1本(商加1)。
师:观察板书你能发现什么?
生1:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。
师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
生:“总有一个抽屉里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。
生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。
师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。
交流、说理活动:
生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。
生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里至少有2本书”。
生3我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。
师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?
生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。
师:同学们同意吧?
师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
3.解决问题。71页第3题。(独立完成,交流反馈)。
小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏。
生:2张/因为5÷4=1…1。
师:先验证一下你们的猜测:举牌验证。
师:如有3张同花色的,符合你们的猜测吗?
师:如果9个人每一个人抽一张呢?
生:至少有3张牌是同一花色,因为9÷4=2…1。
上面我们所证明的数学原理就是最简单的“抽屉原理”,可以概括为:把m个物体任意放到m-1个抽屉里,那么总有一个抽屉中放进了至少2个物体。
1.从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔……十二种生肖)相同。说明理由。
2.任意367名学生中,一定存在两名学生,他们在同一天过生日。说明理由。
1、小组活动很容易抓住学生的注意力,让学生觉得这节课要探究的问题即好玩又有意义。
3、部分学生很难判断谁是物体,谁是抽屉。
上一篇:体育教学的工作计划【8篇】