数据分析师的财务管理和报表分析样例精选8篇
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“数据分析师的财务管理和报表分析样例精选8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
数据分析师的财务管理和报表分析【第一篇】
2、负责处理客户的现场咨询、环境分析研判指导、数据分析指导、专家会商等需求;。
3、负责区域大气污染成因分析指导及分析报告模板编制;。
4、负责协助重要项目实施的.技术指导和技术支撑工作。
1、大气科学、环境科学、大气物理或气象等相关专业博士,或硕士特别优秀者;。
2、掌握大气污染理论,对污染扩散模型、污染预警、污染溯源等技术有实践经验;。
4、要求创新能力强,善于利用新方法新工具解决新问题;。
5、具有较强的逻辑分析能力和文字表达能力,善于和人交流。
数据分析师的财务管理和报表分析【第二篇】
投资分析师是指在黄金生产、流通领域从事投资操作、市场分析、咨询和投资策略制定与评估的人员,是正确引导黄金投资、防范黄金投资风险、促进黄金市场规范发展的关键人物。
他们的主要工作内容有:进行黄金市场和黄金投资战略的分析、咨询与规划;向黄金生产、经营、经纪、投资和代理机构提供黄金价格影响因素分析和价格预测;按照与黄金投资客户签订的代理协议,提供参考性的黄金投资策略;进行黄金投资的风险或收益分析,指导客户黄金投资;根据客户需要,代客户拟定黄金投资计划等。
投资分析属于跨学科研究,从业要掌握多个领域的知识和技能:具有良好的国际政治、经济、金融知识结构,熟知黄金,货币理论,掌握一套完整而独特的黄金价格预测方法,并能够熟练运用这些理论和方法进行黄金市场深度分析;比较准确的预测影响黄金价格的主要因素,预测黄金价格走势;把握住机会,在实际操作中取得实实在在的效益;能够拟定黄金生产、冶炼、加工和流通企业发展战略规划,能够从事黄金市场和黄金投资战略分析与咨询。助理分析师主要负责黄金投资交易的具体操作、资金清算、信息收集整理、技术分析等。
与股票、房产相比,黄金无论在哪个国家、哪个年代,都是变现能力极强的硬通货。其不仅具有保值功能,而且从长期投资来看,具有不错的增值空间。
一项对月收入3000元以上的市民的调查显示,近40%的被调查者对投资黄金有相当浓厚的兴趣,这其中有近1/3的人愿意用20%以上的个人资产进行黄金投资。专家预计,未来还将有相当很大一部分投资者进入黄金市场,个人炒金将呈现极大的魅力。
中国黄金产量达270491吨,同比增长%,创历史最高。中国黄金产量已从世界第四跃升为世界第二。随着上海黄金交易所黄金投资业务向社会开放,群众可以通过商业银行或投资代理机构进行黄金投资。黄金是迄今最快捷、最方便的投资渠道之一,投资黄金的人员会迅速增加,他们迫切需要黄金投资分析师的策划和指导。
目前,国内黄金行业(包括黄金生产、加工、流通和黄金投资与投资咨询)的从业人员达130万人,而在黄金经营企业(金矿、黄金加工企业、黄金饰品店)和金融系统(上海黄金交易所、各大商业银行)从事与黄金投资相关的分析人员数量估计在万人左右。
黄金投资行业这个朝阳行业未来的几年将会迎来一个迅速的发展期,会有很广阔的发展的前景。黄金投资分析师不仅能帮助普通投资者降低风险,还能像股市上的证券分析师那样,为投资者提供价格预测、风险管理、投资咨询、代理理财等多项服务,从而让炒金族获得更大收益。
中国投资黄金的人群据估算已经超过100万人。与为数甚众的证券业分析师相比,黄金投资分析师这一职业属于新兴事物,专业的黄金投资分析师人才相当匮乏。黄金投资分析师职业的确立是行业发展的需要,是我国金融改革和开放的需要,是提高国家金融安全的需要,是我国社会主义经济建设水平提高的需要。
尽管黄金投资分析师的前景看好,但从事这个职业并不那么轻松,因为黄金市场与汇市、油市、股市联动,还与国际政治因素密切相关,影响金价的因素非常复杂,预测金价远比预测股票价格要难得多,其要求不比证券分析师差多少。内资行业与外资的相关专业人士的差距也非常大,迫切需要通过大量的实践经验,阅历的积累,提升个人的专业素质与职业眼界,提高职业竞争能力。
黄金投资分析师的收入来源于三个部分:一是任职单位发放的固定年薪及分红,二是为投资者提供的专项咨询服务,三是个人投资的收入。据了解,像上海、广州、北京等目前炒金发达地区,黄金投资分析师的月薪几乎都在万元以上,甚至个别专为大客户服务的人月收入超过5万元。
数据分析师的财务管理和报表分析【第三篇】
但数据分析技能也是未来必不可少的工作技能之一。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定的。
“大数据分析师就是一群玩数据的人,玩出数据的商业价值,让数据变成生产力。”而大数据和传统数据的最大区别在于,它是在线的、实时的、规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。
有媒体报道,在美国,大数据分析师平均每年薪酬高达万美元,而国内顶尖互联网公司,大数据分析师的薪酬可能要比同一个级别的其他职位高20%至30%,且颇受企业重视。
国内某大型招聘平台给出的数据分析师平均薪酬为:9724(取自1139份样本),且北京、上海、广州、深圳、杭州、南京、武汉、成都、长沙为大数据分析师需求量前十的城市。
数据分析师的财务管理和报表分析【第四篇】
销售数据分析师负责电商商品运营及数据分析并编制报表.对公司整体销售与库存数据分析。下面是本站网友为您精心分享的“数据分析师的财务管理和报表分析样例精选8篇”,提出解决方案。
9.具有良好的与各销售单位、营业所沟通的技巧,以正确的管理理念服务于一线。
10.完成领导交办的工作。
11.模式费用审核在规定时间内反馈。
12.完成领导交办的其他任务。
职责。
1、负责收集,反馈,整理,分析相关销售数据;。
2、配合进行各项项目管理及数据分析,参与实施过程及进度效率的管控;。
3、建立报表制度、定期发布数据分析报告,不定期开展数据专项研究;。
4、完成其他上级交办的任务。
任职资格。
1、大专以上学历,两年以上同类工作经验;。
2、数据分析能力强,能熟练运用和制作相关报表;。
3、具良好的沟通与协调能力,学习和表达能力强;。
4、责任心较好,能承担较强的工作压力。
(一)拟定备货计划。
1、根据业务员所分管区域及所管辖经销商的申请计划和公司库存及销售情况编制下月进货计划表,并交由领导审批。
2、做出进货成本核算并报备财务人员筹集资金发票。
3、根据制定出的进货计划表中机型数量报由仓储人员准备好下月进货所需仓位面积。
(二)拟定进货管理制度。
根据总部下达文件并结合实际情况制定合理进货制度。
(三)办理订货。
1、根据经销商提交订货单及要货计划等其他订货所需资料,审核资料完整性及经销商账面资金情况,办理订货流程并及时扣款。
2、及时跟踪机器的生产情况,在机器下线前提前一个礼拜通知经销商准备提货并办理提货手续。
(四)把关进销存。
每天及时跟进公司库存情况及销售情况,定期做需求表,包括日库存表,周提货分析表、月需求分析表。
职责:
1、熟练掌握excel,能流畅使用函数进行计算;。
3、了解零售运营,能够合理的配货、调货、补货;。
4、积极配合运营部接待代理商,向其介绍商品,做接单分析并合理提出每季买货意见;。
5、根据每周、日销售报表进行数据分析,并制作汇总表;。
7、完成领导交给的其他任务。
任职要求:
1、大专以上学历,工商、统计类相关专业;。
2、一年以上服装或者零售业货品进销存管理经验,优秀应届生亦可;。
3、熟悉操作word、excel等办公软件及erp系统;。
4、良好的表达和沟通能力;。
5、有较强的执行力;。
6、协助部门主管处理其他日常事务工作。
职责:
2、销量核查,参与奖金方案设计、计算与分析;。
3、拜访系统建立更新和维护,跟进拜访信息的收集和提交,提升信息完成质量;。
4、运用统计分析工具对运营过程的关键价值因素进行评价分析;。
6、参与年度销售指标与人员编制预算,负责跟踪并反馈销售队伍绩效分析,跟进销售部门的kpi管理。
任职要求:
1、大专及以上学历,数学、统计学、计算机应用等相关专业优先;。
2、熟悉数据分析方法及基础的业务知识,具备一定的项目管理能力佳;。
5、良好的沟通能力和团队协作精神,工作细致,责任心强,具有较强的抗压能力。
数据分析师的财务管理和报表分析【第五篇】
4、推动用户与销售经营生产数据的.融合通过用户指标、跨部门数据合作等不断推进用户数据应用。
1、本科学历,数学、统计学、计算机相关专业;
4、熟悉主流的数据分析方法(回归分析、关联分析、预测分析等)及数据统计模型。
数据分析师的财务管理和报表分析【第六篇】
而数据分析也越来越受到领导层的重视,借助报表告诉用户什么已经发生了,借助olap和可视化工具等分析工具告诉用户为什么发生了,通过dashboard监控告诉用户现在在发生什么,通过预报告诉用户什么可能会发生。数据分析会从海量数据中提取、挖掘对业务发展有价值的、潜在的知识,找出趋势,为决策层的提供有力依据,为产品或服务发展方向起到积极作用,有力推动企业内部的科学化、信息化管理。
(1)facebook广告与微博、sns等网络社区的用户相联系,通过先进的数据挖掘与分析技术,为广告商提供更为精准定位的服务,该精准广告模式收到广大广告商的热捧,根据市场调研机构emarketer的数据,facebook年营收额超过20亿美元,成为美国最大的在线显示广告提供商。
(2)hitwise发布会上,亚太区负责人john举例说明:亚马逊30%的销售是来自其系统自动的产品推荐,通过客户分类,测试统计,行为建模,投放优化四步,运营客户的行为数据带来竞争优势。
此外,还有好多好多,数据分析,在营销、金融、互联网等方面应用是非常广泛的:比如在营销领域,有数据库营销,精准营销,rfm分析,客户分群,销量预测等等;在金融上预测股价及其波动,套利模型等等;在互联网电子商务上面,百度的精准广告,淘宝的数据魔方等等。类似成功的案例会越来越多,以至于数据分析师也越来越受到重视。
然而,现实却是另一种情况。我们来看一个来自微博上的信息:在美国目前面临14万~19万具有数据分析和管理能力的专业人员,以及150万具有理解和决策能力(基于对海量数据的研究)的管理人员和分析人员的人才短缺。而在中国,受过专业训练并有经验的数据分析人才,未来三年,分析能力人才供需缺口将逐渐放大,高级分析人才难寻。也就是说,数据分析的需求在不断增长,然而合格的为企业做分析决策的数据分析师却寥寥无几。好多人想做数据分析却不知道如何入手,要么不懂得如何清洗数据,直接把数据拿来就用;要么乱套模型,分析的头头是道,其实完全不是那么回事。按俗话说就是:见过猪跑,没吃过猪肉。
为此,我对自己的规划如下:
第一步:掌握基本的`数据分析知识(比如统计,概率,数据挖掘基础理论,运筹学等),掌握基本的数据分析软件(比如,vba,matlab,spss,sql等等),掌握基本的商业经济常识(比如宏微观经济学,营销理论,投资基础知识,战略与风险管理等等)。这些基础知识,在学校里尽量的学习,而且我来到了和君商学院,这样我可以在商业分析、经济分析上面领悟到一些东西,增强我的数据分析能力。
第二步:参与各种实习。研一开始我当时虽然有课,不过很幸运的找到一份一周只需去一两天的兼职,内容是为三星做竞争对手分析,当然分析框架是leader给定了,我只是做整合资料和往ppt里填充的内容的工作,不过通过兼职,我接触到了咨询行业,也向正式员工学习了很多商业分析、思考逻辑之类的东西。之后去西门子,做和vba的事情,虽然做的事情与数据分析无关,不过在公司经常用vba做一些自动化处理工作,为自己的数据分析工具打好了基础。再之后去了易车,在那里兼职了一个多月,参与了大众汽车销量数据短期预测的项目,一个小项目下来,数据分析的方法流程掌握了不少,也了解了企业是如何用一些时间序列模型去参与预测的,如何选取某个拟合曲线作为预测值。现在,我来到新的地方实习,也非常幸运的参加了一个央企的码头堆场优化系统设计,其实也算数据分析的一种吧,通过码头的数据实施调度,通过码头的数据进行决策,最后写成一个可操作的自动化系统。而这个项目,最重要的就是业务流程的把握,我也参与项目最初的需求调研,和制定工作任务说明书sow,体会颇多。
第三步:第一份工作,预计3-5年。我估计会选择咨询公司或者it公司吧,主要是做数据分析这块比较强的公司,比如fico,埃森哲,高沃,瑞尼尔,ibm,ac等等。通过第一份工作去把自己的知识打得扎实些,学会在实际中应用所学,学会数据分析的流程方法,让自己成长起来。
第四步:去自己喜欢的一个行业,深入了解这个行业,并讲数据分析应用到这个行业里。比如我可以去电子商务做数据分析师。我觉得我选择电子商务,是因为未来必将是互联网的时代,电子商务必将取代传统商务,最显著的现象就是传统零售商老大沃尔玛正在受到亚马逊的挑战。此外,电子商务比传统的零售商具有更好的数据收集和管理能力,可以更好的跟踪用户、挖掘潜在用户、挖掘潜在商品。
第五步:未知。我暂时没有想法,不过我希望我是在一直的进步。
能力:
1、一定要懂点战略、才能结合商业;。
2、一定要漂亮的presentation、才能buying;。
3、一定要有globalview、才能打单;。
4、一定要懂业务、才能结合市场;。
5、一定要专几种工具、才能干活;。
6、一定要学好、才能有效率;。
7、一定要有强悍理论基础、才能入门;。
8、一定要努力、才能赚钱;最重要的:
文档为doc格式。
数据分析师的财务管理和报表分析【第七篇】
职责:
2、基于业务数据,深入挖掘用户价值,寻找提升业绩的切入点。
3、跟进产品的分析需求,撰写业务分析报告,结合数据趋势提出产品阶段性优化建议;。
5、不断创新和改善已有的异常数据监控方式,为产品运营提供可靠的数据支持;。
6、定期编制统计报表及分析简报。
8、为公司其他部门或项目提供数据挖掘支持,负责从数据的角度给出决策建议。
任职要求:
1、统计学、市场营销、数学、统计、计算机等相关专业大专以上学历;。
2、2年以上数据分析相关工作经验,对数据敏感,能从数据中发现问题、解决问题;。
3、熟悉公司产品及相关产品的市场行情,熟悉行业内各类数据分析指标;。
5、工作认真负责,具备良好的团队合作精神。
6、熟练使用excel、ppt等常用数据整理工具和图表制作工具。
7、熟悉erp(u9)、oa、mes管理系统,能快速有效提取需求数据。
数据分析师的财务管理和报表分析【第八篇】
1、数据收集设计:根据项目目标,设计爬取数据的关键词,与爬虫工程师沟通对接数据收集工作。
2、数据处理和清理:对海量业务数据进行处理和分析,清洗文字信息,数据标签。
3、数据分析辅助:配合业务分析团队和算法团队,进行用户标签体系模型搭建,知识图谱建立和维护,项目数据分析辅助。
1、计量经济学、运筹学、信息系统、统计学、计算机软件相关专业,硕士优先;
2、流利的`英语读写能力将是加分项。
4、能够使用mysql,python,excel完成数据查询与清洗;
5、对解决非结构和非标准的数据问题有巨大的热情。
6、了解tableau等统计软件。
7、有强烈的上进心和自我提升的意愿,对大数据和ai技术有饱满的热情。
上一篇:残疾人帮扶计划书(优推10篇)