全国人教版八年级数学教案实用8篇

网友 分享 时间:

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“全国人教版八年级数学教案实用8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

全国人教版八年级数学教案【第一篇】

加权平均数.

(二)内容解析。

学生在第二学段已学过平均数,初步了解了平均数的实际意义,这个课时将在此基础上,在研究数据集中趋势的大背景下,学习加权平均数,体会权的意义、作用,并进一步体会平均数是刻画一组数据集中趋势的重要的统计量,是一组数据的“重心”.

教科书设计了以招聘英文翻译为背景的实际问题,根据不同的招聘要求,各项成绩的“重要程度”不同,从而平均成绩不同,由此引入加权平均数的概念.权的重要性在于它能够反映数据的相对“重要程度”.为了更好地说明这一点,教科书设计了“思考”栏目和例1,从不同方面体现权的作用,使学生更好地理解加权平均数,体会权的意义和作用.

基于以上分析,本节课的教学重点是:对权及加权平均数统计意义的理解.

二、目标和目标解析。

(一)目标。

1.理解加权平均数的统计意义.

2.会用加权平均数分析一组数据的集中趋势,发展数据分析能力.

(二)目标解析。

1.理解权表示数据的相对“重要程度”,体会权的差异对平均数的影响,会计算加权平均数.

2.面对一组数据时,能根据具体情况赋予适当的权,并根据得到的加权平均数对实际问题作出简单的判断.

三、教学问题诊断分析。

加权平均数不同于简单的算术平均数,简单的算术平均数只与数据的大小有关,而加权平均数则还与该组数据的权相关,学生对权的意义和作用的理解会有困难,往往造成数据与权混淆不清,只会利用公式,而不知加权平均数的统计意义.

本节课的教学难点是:对权的意义的理解,用加权平均数分析一组数据的集中趋势.

四、教学支持条件分析。

由于教学重点是对加权平均数意义的理解,可以用电子表格excell来辅助计算加权平均数,同时加深对权意义的理解.

五、教学过程设计。

(一)创设情境,提出问题。

通过已有的统计学方面的知识,我们知道当收集到一些数据后,通常用统计图表整理和描述这些数据,为了进一步获取信息,还需要对数据进行分析,小学时我们学习过平均数,知道它可以反映一组数据的平均水平.本节我们将在实际问题情境中,进一步探讨平均数的统计意义,并学习中位数、众数和方差等另外几个统计量,了解它们在数据分析中的作用.

师生活动:阅读章引言.

设计意图:让学生回顾统计调查的一般步骤,了解本节的大致内容,体会数据分析是统计的重要环节,而平均数等统计量在数据分析中起着重要作用.

问题1一家公司打算招聘一名英文翻译,对甲、乙两名候选人进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:

应试者听说读写。

甲85788573。

乙73808283。

如果这家公司想招一名综合能力较强的翻译,该录用谁?录用依据是什么?

师生活动:学生提出评判依据,若学生提出以总分作为依据,教师要引导学生思考:已学过的哪个统计量可反映数据的集中趋势?学生计算平均数,解决问题.

设计意图:回顾小学学过的平均数的意义,为引入加权平均数作铺垫.

追问1:用小学学过的平均数解决问题2合理吗?为什么?

追问2:如何在计算平均数时体现听、说、读、写的差别?

师生活动:教师适时地追问,学生自主设计计算平均数的方法,教师收集整理学生的计算方法,并统一计算形式,讲解权的意义及加权平均数.

设计意图:追问1让学生理解问题2与问题1的有区别,问题2中的每个数据的“重要程度”不同,追问2让学生自主探究如何在计算平均数时体现的每个数据的“重要程度”不同,从而体会权的意义.

(二)抽象概括,形成概念。

全国人教版八年级数学教案【第二篇】

20。

30。

40。

50。

(1)、第二组数据的组中值是多少?

(2)、求该班学生平均每天做数学作业所用时间。

2、某班40名学生身高情况如下图,

请计算该班学生平均身高。

答案1.(1).15.(2)。

全国人教版八年级数学教案【第三篇】

1、了解方差的定义和计算公式。

2、理解方差概念产生和形成过程。

3、会用方差计算公式比较两组数据波动大小。

重点:掌握方差产生的必要性和应用方差公式解决实际问题。

难点:理解方差公式。

(一)知识详解:

方差:设有n个数据,各数据与它们的平均数的差的平方分别为。

用它们的平均数表示这组数据的方差,即。

给力小贴士:方差越小说明这组数据越稳定,波动性越低。

(二)自主检测小练习:

1、已知一组数据为、-、-4,则这组数据的方差为。

2、甲、乙两组数据如下:

甲组:1091181213107;

乙组:7891011121112。

分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。

引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下(单位:cm):

甲:;

乙:;

问:(1)哪种农作物的苗长较高(可以计算它们的平均数:=)?

(2)哪种农作物的苗长较整齐?(可以计算它们的极差,你可以发现)。

归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别为。

用它们的平均数表示这组数据的方差,即用来表示。

(一)例题讲解:

金志强1013161412。

提示:先求平均数,然后使用公式计算方差。

(二)小试身手。

1、甲、乙两名学生在相同条件下各射击靶10次,命中的环数如下:

甲:。

乙:。

经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定去参加比赛。

1、求下列数据的众数:

(1)(2)。

方差公式:

提示:方差越小,说明这组数据越集中。波动性越小。

每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。

1、小爽和小兵在10次百米跑步练习中的成绩如下表所示:(单位:秒)。

如果根据这些成绩选拔一人参加比赛,你会选谁呢?

必做题:教材141页练习;选做题:练习册对应部分习题。

写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!

全国人教版八年级数学教案【第四篇】

(1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。

(2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)。

(3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。

(4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。

2、教材p145例5的意图。

(1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。

(2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)。

(3)、例5也反映了众数是数据代表的一种。

全国人教版八年级数学教案【第五篇】

教学目标:

1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

重点与难点:

重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

难点:分析典型图案的设计意图。

疑点:在设计的图案中清晰地表现自己的设计意图。

教具学具准备:

提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

教学过程设计:

1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)。

明确在欣赏了图案后,简单地复习旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

2、课本。

1欣赏课本75页图3—24的图案,并分析这个图案形成过程。

评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

(二)课内练习。

(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

(三)议一议。

生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

(四)课时小结。

本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)。

进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

全国人教版八年级数学教案【第六篇】

1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.

2、会求一组数据的极差.

1、重点:会求一组数据的极差.

2、难点:本节课内容较容易接受,不存在难点、

从表中你能得到哪些信息?

比较两段时间气温的高低,求平均气温是一种常用的方法、

这是不是说,两个时段的气温情况没有什么差异呢?

根据两段时间的气温情况可绘成的折线图、

观察一下,它们有区别吗?说说你观察得到的结果、

本节课在教材中没有相应的例题,教材p152习题分析。

问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大、问题2涉及前一个学期统计知识首先应回忆复习已学知识、问题3答案并不唯一,合理即可。

全国人教版八年级数学教案【第七篇】

教学目标:

1.认识“左、右”的位置关系,体会其相对性。

2.能够初步运用左右描述物体的位置,解决实际问题。

3.通过生动有趣的数学活动,使学生体会到学习数学的乐趣。

教学重点:

认识“左、右”的位置关系,体会其相对性。

教学难点:

运用左右描述物体的位置,解决实际问题。

教学过程:

一、创设情境,导入新课。

1.同学对你的同桌说一说,哪只是右手,哪只是左手。

2.我们要来认识“左右”。(板书课题:左右)。

二、联系自身,体验左右。

1.摸一摸。

(2)哪只是左脚?哪只是右脚?

(4)还有左耳和右耳。

(5)还有左眼和右眼。

(6)还有左肩和右肩。……。

(7)生每说一种,教师都引导全体学生用手摸一摸。

三、实际操作,探索新知。

1.摆一摆。

游戏做完了,现在我们要开始摆文具了。同桌的同学互相合作,听清楚老师说的话。

请你在桌上放一块橡皮;。

在橡皮的左边摆一枝铅笔;。

在橡皮的右边摆一个铅笔盒;。

在铅笔盒的左边,橡皮的右边摆一把尺子;。

在铅笔盒的右边摆一把小刀。

生摆好后,师用出示正确的排列顺序,生检查自己的排列。

2.数一数。

从左数橡皮是第几个?从右数橡皮是第几个?

从左数橡皮是第二个,从右数橡皮是第四个。

为什么橡皮一会儿排第二?一会儿又排第四?

什么东西反了?能讲得更清楚一些吗?

(数的顺序反了,开始是从左数,后来是从右数。)。

师小结:也就是说,同样一个物体,从左数和从右数,结果就可能不一样。

3.爬楼梯。上楼梯时我们要靠哪边走?

下楼梯时我们又要靠哪边走?

请你们两位示范一下,把教室中间过道当楼梯,一个从前往后走是下楼梯,另一个从后往前走是上楼梯。

(生观察时师提醒:下楼梯的同学是靠哪边走?)。

(生还是有的说左边,有的说右边。)。

师:教学楼中间有一个楼梯,同学们想不想去走一走?

(全体学生进行室外活动:走上楼梯,又走下楼梯。下楼梯时,师又提醒:下楼梯时你靠哪边走?)。

回到教室。

现在同学们明白下楼梯时靠哪边走吗?

为什么上、下楼梯都靠右边走?

(如果不这样走,上、下楼梯的人就会相撞。)。

对!特别是要做课间操时楼梯比较拥挤,如果相撞就会发生危险。

4.练一练。

(出示课本第61页第3题图)他们都是靠右走的吗?

五、运用新知,解决问题。

1.转弯判断。同学们想不想去公园玩?

那我们就坐这辆大客车去吧!(师拿出玩具客车。)。

准备好,要出发了,请同学们判断客车是往左转还是往右转?

(师在“十字路口图”上演示转弯。)。

小组讨论一下,客车到底是往哪边转。

(生组内讨论交流意见。)。

师生共同小结:站的方向不同,左右也不同。在日常生活中,汽车转弯的方向常常以司机为准。

2.小游戏:我是小司机。

同桌的同学互相配合,左边的同学说命令,右边的同学用玩具小汽车在“十字路口图”上转弯,然后交换角色。

六、课堂总结。

通过这节课,你有哪些收获?你印象最深的是什么?你有什么感想吗?

文档为doc格式。

全国人教版八年级数学教案【第八篇】

一、教学目标:

1.理解并掌握矩形的判定方法.

二、重点、难点。

1.重点:矩形的判定.

2.难点:矩形的判定及性质的综合应用.

三、例题的意图分析。

本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.

四、课堂引入。

1.什么叫做平行四边形?什么叫做矩形?

2.矩形有哪些性质?

3.矩形与平行四边形有什么共同之处?有什么不同之处?

通过讨论得到矩形的判定方法.

矩形判定方法1:对角钱相等的平行四边形是矩形.

矩形判定方法2:有三个角是直角的四边形是矩形.

(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)。

48 1658545
");