实用倒数的认识教案设计意图 认识倒数教案精彩4篇

网友 分享 时间:

【导读预览】此篇优秀范文“实用倒数的认识教案设计意图 认识倒数教案精彩4篇”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!

倒数的认识教案设计意图【第一篇】

教学内容教科书第28~29页例1、“做一做”及相关内容。

1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。

2.使学生体验找一个数的倒数的方法,会求一个数的倒数。

3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。

教学重点理解倒数的意义;求一个数的倒数。

教学难点理解“互为倒数”的含义。

教学准备教学课件、写算式的卡片。

教学过程具体内容修订

基本训练,强化巩固。

(3分钟)1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。

2.学生独立完成上面几组题,小组内检查并订正。

创设情境,激趣导入。

(2分钟)请个别学生说说分数乘法的'计算方法,突出分子与分母的约分。

提示目标,明确重点。

(1分钟)通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。

学生自学,教师巡视。

(6分钟)1.观察这些算式,如果将它们分成两类,怎样分?

2.通过观察发现算式的特点。

展示成果,体验成功。

(4分钟)让学生说说乘积为1的算式有什么特点。

学生讨论,教师点拨。

(8分钟)1.学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。

2.认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。

3.引导学生思考:互为倒数的两个数有什么特点?

4.探讨求倒数方法。

(1)出示例题,让学生说说哪两个数互为倒数。

(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书

倒数的认识教案设计意图【第二篇】

《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。

1、知道倒数的意义,会求一个数的倒数。

2、经历倒数的意义这一概念的形式过程。

3、培养学生观察、归纳、推理和概括的能力。

4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。

理解倒数的意义,会求一个数的倒数。

教学环节

教师活动

预设学生行为

设计意图

倒,你对这个字怎么理解?

那要是在这个字的后面加个数,就变成。。。倒数,你对这个词又是怎么理解?

出示1/5×5,3/8×8/3,1/12×12,15/7×7/15这几组算式,开展小组活动,算一算,找一找,这几组算式有什么特点?同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,并且它们的乘积是1.

具有这种关系的数叫做互为倒数。谁来说一说什么样的两个数叫做互为倒数?出示倒数的意义:乘积是1的两个数叫做互为倒数。

学生说,就是把它倒过来,还做了个手势颠倒位置。

学生有可能会说,每组中都是一个是真分数一个是假分数。

学生有可能只计算出结果。没发现这几组算式它们的分子,分母的位置是颠倒的。

设疑,让学生产生求知的欲望。

从两个数的关系入手研究,抓住了数学的本质,使学生体会到数学的'研究是一脉相连的。

让学生通过观察﹑计算发现这几组算式的乘积都是1.并且它们的分子分母的位置刚好颠倒。

让学生说说对倒数意义的理解,在这个概念中你认为哪个词比较关键?

学生有可能会说1/5是倒数。5/1也是倒数。并让学生知道这种说法是不正确的。

乘积是1的两个数叫做互为倒数。只能说1/5和5/1互为倒数或1/5的倒数是5/1。但也有可能会说得很完整。

让学生重点去理解“互为”是什么意思,加深对倒数的概念的理解。

3/5的倒数是(),

8的倒数是(),

的倒数是()

/5交换分子分母的位置,得5/3,所以3/5的倒数是5/3。

可以写成8/1,所以8的倒数是1/8。

也可以写成1/2,所以的倒数是2.

让学生归纳总结出找倒数的方法。

0和1有没有倒数,如果有,它的倒数是几,如果没有,为什么?同学们试着研究。

1的倒数是1。

0没有倒数。因为0不能做为分数的分母。

加深对0没有倒数的理解;

加深对倒数知识的理解;

学生的思维逐步深刻,较好地实现了对于概念的建构,而且渗透了认真,严谨的学习态度。

1.同桌互说倒数;

2.判断。

(1)5/9是倒数,9/5也是倒数。()

(2)0的倒数还是0.()

(3)一个数的倒数一定比这个数小。()。

3.开放性训练。3/5×()=()×4/7=()×()

学生会很活跃。

加深对0没有倒数的理解;

加深对倒数知识的理解;

开放题让学生的思维得到更深层次的拓展。

这节课你学会了什么?

与教师一起总结

培养学生的表达能力以及加深对倒数知识的理解。

板书设计

倒数的认识

倒数的意义:乘积是1的两个数叫做互为倒数。

求倒数的方法:1.分数——分子分母调换位置。

2.整数或小数——先化成分数,再调换分子分母的位置。

1的倒数是1,0没有倒数。

倒数的认识教案设计意图【第三篇】

教学目标1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

2.使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

3.通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

教学重难点

教学重点:理解倒数的意义,学会求倒数的方法。

教学难点:发现倒数的一些特征。

教具准备课件

设计意图

教学过程

特色设计

通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。

一、猜字游戏引入新课

找找下面文字的构成规律

呆―――杏土―――干吞―――吴

按照上面的规律填数

――()――()――()

能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数

二、新知探究

(一)探究讨论,理解倒数的意义。

1.课件出示算式。

开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。

我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

2.出示倒数的意义:乘积是1的两个数互为倒数。

3.你是怎样理解互为倒数的呢?能举例吗?

(二)深化理解。

1.乘积是1的两个数存在着怎样的倒数关系呢?

2.互为倒数的两个数有什么特点?

3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

又因为0与任何数相乘都不等于1,所以0没有倒数。)

(三)运用概念。

1.讨论求一个数的倒数的方法。

出示例2:写出其中3/5、7/2两个分数的倒数。

学生试做讨论后,教师将过程。

小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

2.怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

三、巩固练习

(一)完成教材第28页的“做一做”

(二)完成教材第29页练习六的第1-5题。

四、课堂小结

今天我们学习了有关倒数的哪些新知识?板书设计

将本文的word文档下载到电脑,方便收藏和打印

推荐度:

点击下载文档

搜索文档

倒数的认识教案设计意图【第四篇】

教学目标:

1、理解倒数的意义,掌握求一个数倒数的方法,能熟练地写出一个数的倒数。

2、引导同学自主合作交流学习,结合教学实际培养同学的笼统概括能力,激发同学学习的兴趣。

教学重点:理解倒数的意义,掌握求倒数的方法。

教学难点 :熟练写出一个数的倒数。

教具准备:多媒体课件。

教学过程:

一、情境导入。

1、口算。

5/12×2/5 = 15/7 ×7/5 = 11/8 ×8/13 =

5/21×1/5 = 3/16 ×7/3 = 8/21 ×7/8 =

先独立考虑,再指名口算订正。

2、比一比,看谁算得又对又快:

2/3×3/2 = 2×1/2 = 11/8 ×8/11 =

1/10×10= 7/9×9/7 = 1/7×7=

6/5×5/6 = 1/5×5 = 22/35×35/22 =

同学先独立口算,再口答订正。观察这些算式,说说自身有什么发现。

二、合作探索。

1、小组合作交流:

(1)和同桌说一说你的发现。

(2)请你自身举出3个像上面这样的乘法式子。

小组代表说说有什么发现。指名说说自身举出的例子。

教师:像这样的乘积是1的两个数我们说它们的关系是互为倒数。

教师:关于倒数的知识,你已经有哪些认识?(同学说说自身的已有认识)

教师:书上又是怎样讲解倒数的呢?我们一起来读一读。

阅读教材,进一步理解。

教师:现在谁来说一说自身是怎样理解倒数的?

同学口答,教师小结:假如两个数的乘积是1,那么我们称其中一个数是另一个数的倒数,并称这两个数互为倒数。

出示:乘积是1的两个数互为倒数。读一读,强调概念中的关键词:“乘积”、“互为”。

2、强化概念理解。

你认为下面这两种说法是否正确?

(1) 2/3 是倒数。

(2) 得数是1的两个数互为倒数。

同学先独立考虑,再口答,说明理由。

48 3027813
");