数据分析师财务工作总结范文个人专业【推荐8篇】
【请您参阅】下面供您参考的“数据分析师财务工作总结范文个人专业【推荐8篇】”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!
数据分析师财务工作总结个人【第一篇】
位于*东南部的福建(三明、泉州、福州、宁德)、江西(南丰、广川)两省山岳地区,有着数量较多的一种以生土为主要建筑材料、生土与木结构相结合并不同程度使用石材的“土堡”建筑。这些土堡建筑以合院式建筑为主,规模宏,造型奇特,结构精巧,或建在海拔较高的山岗(高岗型),或离村庄不远的山坡(坡地型),或建在水田当中(田中型),或土堡与民居建在一起(混合型),与当地其他传统低矮民居组合成小不同的村落,服务于家族或村落的聚居防御需要。它们比福建土楼历史更悠久,既有着悠久的文化历诗统,又与周边自然环境完美融合,构成一组组和谐美妙的景观。其中,福建土堡最具代表性,数量也最多,而福建土堡又以三明市田、尤溪和永安三县留存数量最多、保存最完整、种类最齐全。
从20xx年至20xx年的五年时间里,三明土堡通过土堡课题专项调研、第三次全国文物普查、拍摄土堡资料宣传电视片、召开*福建土堡全国学术研讨会、举办土堡民俗文化节、福建土堡风光摄影展等系列活动,已初步摸清了三明境内土堡的基本情况:
1、土堡的创建历史:产生于隋末唐初,成熟于两宋,盛行于明清,并一直延续至今。
2、土堡的留存数量:200余座,约占总数量的十分之一。
3、范文top100土堡的建筑结构:内通廊式与合院式两种,并以合院式为主。
4、土堡的分布范围:福建、江西两省,并以福建为多;福建省内三明、泉州、福州、宁德四地市,并以三明地区为多;三明市内田、尤溪、永安、宁化、沙县、将乐、清流、明溪、泰宁、三元、梅列十一县(市、区),并以田、尤溪、永安为多。
5、土堡的主要功能:防御为主。
6、土堡的产生原因:生存需要。
二、福建土堡的认定。
关于福建土堡的定义,至今尚未有公开的认定,因此本文的定义只是个人的观点,若有谬误还请方家指正。可以从以下几个方面来探究:
1、三明土堡与土围(江西)、土楼(福建)、围拢屋(粤东)的异同,如下表。
尽管四者之间有差异,但共性是十分明显的,都具有防御性,只师能不同而已,土围、土堡以防御为主,而土楼、围拢屋以居住为主。
2、福建土堡是包括福建土楼在内的*南方乡土防御性建筑的鼻祖。
数据分析师财务工作总结个人【第二篇】
下面,我给你介绍一名合格的数据分析师需要具备的五大基本能力和素质。
1、态度严谨负责。
严谨负责是数据分析师的必备素质之一,只有本着严谨负责的态度,才能保证数据的客观、准确。在企业里,数据分析师可以说是企业的医生,他们通过对企业运营数据的分析,为企业寻找症结及问题。一名合格的数据分析师,应具有严谨、负责的态度,保持中立立场,客观评价企业发展过程中存在的问题,为决策层提供有效的参考依据;不应受其他因素影响而更改数据,隐瞒企业存在的问题,这样做对企业发展是非常不利的,甚至会造成严重的后果。而且,对数据分析师自身来说,也是前途尽毁,从此以后所做的数据分析结果都将受到质疑,因为你已经不再是可信赖的人,在同事、领导、客户面前已经失去了信任。所以,作为一名数据分析师就必须持有严谨负责的态度,这也是最基本的职业道德。
2、好奇心强烈。
好奇心人皆有之,但是作为数据分析师,这份好奇心就应该更强烈,要积极主动地发现和挖掘隐藏在数据内部的真相。在数据分析师的脑子里,应该充满着无数个“为什么”,为什么是这样的结果,为什么不是那样的结果,导致这个结果的原因是什么,为什么结果不是预期的那样等等。这一系列问题都要在进行数据分析时提出来,并且通过数据分析,给自己一个满意的答案。越是优秀的数据分析师,好奇心也越不容易满足,回答了一个问题,又会抛出一个新的问题,继续研究下去。只有拥有了这样一种刨根问底的精神,才会对数据和结论保持敏感,继而顺藤摸瓜,找出数据背后的真相。
3、逻辑思维清晰。
除了一颗探索真相的好奇心,数据分析师还需要具备缜密的思维和清晰的逻辑推理能力。我记得有位大师说过:结构为王。何谓结构,结构就是我们常说的逻辑,不论说话还是写文章,都要有条理,有目的,不可眉毛胡子一把抓,不分主次。
通常从事数据分析时所面对的商业问题都是较为复杂的,我们要考虑错综复杂的成因,分析所面对的各种复杂的环境因素,并在若干发展可能性中选择一个最优的方向。这就需要我们对事实有足够的了解,同时也需要我们能真正理清问题的整体以及局部的结构,在深度思考后,理清结构中相互的逻辑关系,只有这样才能真正客观地、科学地找到商业问题的答案。
4、擅长模仿。
在做数据分析时,有自己的想法固然重要,但是“前车之鉴”也是非常有必要学习的,它能帮助数据分析师迅速地成长,因此,模仿是快速提高学习成果的有效方法。这里说的模仿主要是参考他人优秀的分析思路和方法,而并不是说直接“照搬”。成功的模仿需要领会他人方法精髓,理解其分析原理,透过表面达到实质。万变不离其宗,要善于将这些精华转化为自己的知识,否则,只能是“一直在模仿,从未超越过”。
5、勇于创新。
通过模仿可以借鉴他人的成功经验,但模仿的时间不宜太长,并且建议每次模仿后都要进行总结,提出可以改进的地方,甚至要有所创新。创新是一个优秀数据分析师应具备的精神,只有不断的创新,才能提高自己的分析水平,使自己站在更高的角度来分析问题,为整个研究领域乃至社会带来更多的价值。现在的分析方法和研究课题千变万化,墨守成规是无法很好地解决所面临的新问题的。
听到这里,小白就掰着手指头算自己符合几条优秀数据分析师的素质和能力。
mr.林继续说道:这些素质能力不是说有就有的,需要慢慢培养形成,不能一蹴而就。
数据分析师财务工作总结个人【第三篇】
数据分析方法是通过什么方法去组合数据从而展现规律的环节。从根本目的上来说,数据分析的任务在于抽象数据形成有业务意义的结论。因为单纯的数据是毫无意义的,直接看数据是没有办法发现其中的规律的,只有通过使用分析方法将数据抽象处理后,人们才能看出隐藏在数据背后的规律。
数据分析方法选取是整个数据处理过程的核心,一般从分析的方法复杂度上来讲,我将其分为三个层级,即常规分析方法,统计学分析方法跟自建模型。我之所以这样区分有两个层面上的考虑,分别是抽象程度以及定制程度。
其中抽象程度是说,有些数据不需要加工,直接转成图形的方式呈现出来,就能够表现出业务人员所需要的业务意义,但有些业务需求,直接把数据转化成图形是难以看出来的,需要建立数据模型,将多个指标或一个指标的多个维度进行重组,最终产生出新的数据来,那么形成的这个抽象的结果就是业务人员所需要的业务结论了。基于这个原则,可以划分出常规分析方法和非常规分析方法。
那么另一个层面是定制程度,到今天数学的发展已经有很长的时间了,其中一些经典的分析方法已经沉淀,他们可以通用在多用分析目的中,适用于多种业务结论中,这些分析方法就属于通用分析方法,但有些业务需求确实少见,它所需要的分析方法就不可能完全基于通用方法,因此就会形成独立的分析方法,也就是专门的数学建模,这种情况下所形成的数学模型都是专门为这个业务主题定制的,因此无法适用于多个主题,这类分析方法就属于高度定制的,因此基于这一原则,将非常规分析方法细分为统计学分析方法和自建模型类。
常规分析方法不对数据做抽象的处理,主要是直接呈现原始数据,多用于针对固定的指标、且周期性的分析主题。直接通过原始数据来呈现业务意义,主要是通过趋势分析和占比分析来呈现,其分析方法对应同环比及帕累托分析这两类。同环比分析,其核心目的在于呈现本期与往期之间的差异,如销售量增长趋势;而帕累托分析则是呈现单一维度中的各个要素占比的排名,比如各个地市中本期的销售量增长趋势的排名,以及前百分之八十的增长量都由哪几个地市贡献这样的结论。常规分析方法已经成为最为基础的分析方法,在此也不详细介绍了。
统计学分析方法能够基于以往数据的规律来推导未来的趋势,其中可以分为多种规律总结的方式。根据原理多分为以下几大类,包括有目标结论的有指导学习算法,和没有目标结论的无指导学习算法,以及回归分析。
另外无指导的学习算法因为没有一个给定的目标结论,因此是将指标之中所有有类似属性的数据分别合并在一起,形成聚类的结果。比如最经典的啤酒与尿布分析,业务人员希望了解啤酒跟什么搭配在一起卖会更容易让大家接受,因此需要把所有的购买数据都放进来,然后计算后,得出其他各个商品与啤酒的关联程度或者是距离远近,也就是同时购买了啤酒的人群中,都有购买哪些其他的商品,然后会输出多种结果,比如尿布或者牛肉或者酸奶或者花生米等等,这每个商品都可以成为一个聚类结果,由于没有目标结论,因此这些聚类结果都可以参考,之后就是货品摆放人员尝试各种聚类结果来看效果提升程度。在这个案例中各个商品与啤酒的关联程度或者是距离远近就是算法本身了,这其中的逻辑也有很多中,包括apriori等关联规则、聚类算法等。
另外还有一大类是回归分析,简单说就是几个自变量加减乘除后就能得出因变量来,这样就可以推算未来因变量会是多少了。比如我们想知道活动覆盖率、产品价格、客户薪资水*、客户活跃度等指标与购买量是否有关系,以及如果有关系,那么能不能给出一个等式来,把这几个指标的数据输入进去后,就能够得到购买量,这个时候就需要回归分析了,通过把这些指标以及购买量输入系统,运算后即可分别得出,这些指标对购买量有没有作用,以及如果有作用,那么各个指标应该如何计算才能得出购买量来。回归分析包括线性及非线性回归分析等算法。
统计学分析方法还有很多,不过在今天多用上述几大类分析方法,另外在各个分析方法中,又有很多的不同算法,这部分也是需要分析人员去多多掌握的。
自建模型是在分析方法中最为高阶也是最具有挖掘价值的,在今天多用于金融领域,甚至业界专门为这个人群起了一个名字叫做宽客,这群人就是靠数学模型来分析金融市场。由于统计学分析方法所使用的算法也是具有局限性的,虽然统计学分析方法能够通用在各种场景中,但是它存在不精准的问题,在有指导和没有指导的学习算法中,得出的结论多为含有多体现在结论不精准上,而在金融这种锱铢必较的领域中,这种算法显然不能达到需求的精准度,因此数学家在这个领域中专门自建模型,来输入可以获得数据,得出投资建议来。在统计学分析方法中,回归分析最接近于数学模型的,但公式的复杂程度有限,而数学模型是完全自由的,能够将指标进行任意的组合,确保最终结论的有效性。
数据分析师财务工作总结个人【第四篇】
年龄:26岁。
居住地:西安。
联系电话:***********。
电子邮箱:***@。
在证券公司任职期间,对于股票投资具有深入的研究,善于数据挖掘和财务分析,对于国家政策和经济形势发展具有敏锐的观察力。具有出色的逻辑思维能力和写作能力,曾在知名财经杂志发表文章数篇。能够承受巨大的`工作强度,抗压能力强,工作责任心高,团队合作意识佳,希望在证券行业继续发展。
到岗时间:一周以内。
工作性质:全职。
希望行业:金融/投资/证券。
目标地点:西安。
期望月薪:面议/月。
2012/7—至今:xx金融证券有限公司。
所属行业:金融/投资/证券。
1、负责通过股市报告会、面谈等形式,营销理财服务;。
2、负责分析目标板块的上市公司的基本面,列出投资原因,并给出风险提示;。
3、负责宏观经济、政策走向分析及解读;。
4、负责协助基金经理,对持仓比重、结构、品种做出建议;。
5、负责协助其他分析师进行投资组合的配置。
2010/6--2012/6:xx金融证券有限公司。
所属行业:金融/投资/证券。
1、负责为客户提供投资理财咨询;。
2、负责组建及管理投资顾问团队,维护投资渠道;。
3、负责维护客户关系,推广并销售公司的金融理财产品;。
4、负责通过数据、技术面的分析来进行股票买卖的实盘操作;。
5、负责定期召开投资报告会,培训客户经理的投资分析知识。
2009/10--2010/4:xx金融有限公司。
所属行业:金融/投资/证券。
2、负责跟踪****行业动态,并对行业内变化个股做出分析评价;。
3、负责维护客户,为客户提供咨询服务;。
4、负责***基金的交易,并指导交易员完成交易指令;。
5、负责培训下属员工以及分配部门任务。
2006/9--2010/7西安理工大学金融学本科。
英语:良好。
数据分析师财务工作总结个人【第五篇】
于大部份营销者来说,网站再定向(onsiteretargeting)是其中一个最重要的营销手段,所谓网站再定向的意思是对曾访问您网站的用户进行宣传,在他们浏览网络时向其展示广告。此手段之所以重要是因为在第一次接触中真正转化为购买的只占2%,而没有产生购买就离开网站的人群体高达98%。网站再定向的威力在于它能够帮助你吸引很多的潜在客户,由于这些用户之前已经访问了您的网站一次,这意味着他们确实对您的产品和服务感兴趣。当你不断向这些用户显示相关的广告,将能够吸引他们回访并完成购买。理论上,网站再定向技术听起来完美,但执行起来,却可能让很多广告主走入死胡同,因为它只能够覆盖到旧有的访客,而无法接触新访客。对于广告主来说,网站再定向是一把双刃刀,它虽然能带来绝佳的roi,却由于覆盖度不足,会在无形中扼杀销售机会。
其实无论是广告数据或购买行为数据,网络都能记录下来,而网络的实时记录特性,让它成为当下广告主实现定位营销的不二之选。随着技术不断革新,广告主精细化定位的需求也不断得到满足。在随后的篇幅中,我们会简单地对比几大定位技术,并通过电商案例分析来讨论如何让这些数据技术协同起来,促成客户从浏览广告到掏钱购买的转化,实现广告主的收益最大化。
网络营销的精细化定位潜力只有在大数据的支持下才能完全发挥出来。图中的数据金字塔划分出了数据的四个层级。最底层是广告表现数据,是关于广告位置和其表现的信息。具体而言,就是广告位的尺寸、在网页的位置、以往的点击率、可见曝光(viewableimpreion)等指标。
再上一层就是受众分类数据。如今,市场上的数据提供商可以通过用户的线上和线下的行为,来收集到广告受众的兴趣、需求等数据。这些不会涉及个人真实身份的信息会被分析,并划分为不同的群組,例如性价比追求者、网购达人等。有了受众分类数据,广告主可以在互联网上按自己的需求和品牌的特性来投放。受众分类数据的针对性更强,也能带来比单纯依赖广告表现数据更好的点击率与转换率,因为它提供了消费者行为和偏好等宝贵信息。
第三层是搜索动机数据。搜索再定向是个用于发掘新客户的技术。它的出现让我们能够发掘出那些很可能会购物的用户,因为他们已经开始搜索与广告主产品相关的信息了。那些具有高商业价值的数据可以进一步被筛选出来,广告主可以将具有高购买意愿的人们再定向到自己的产品信息上来。
而位居数据金字塔顶端的是站内客户数据,这指的是用户在广告主网站上的用户行为数据,包括了用户浏览的页面,下载的信息,以及加入购物车的商品等数据。网站用户通常是那些已经了解过品牌并且对公司也熟悉的一群人。
对于广告主来说,金字塔四层的数据都独具价值。举例而言,广告表现数据是每个广告主都首先会关注的信息,因为这些信息在大多数广告管理平台和广告交易平台都能轻易获得的。同时,那些与用户需求和偏好相关的数据,能够助力广告主更好地实现精细化营销。因此,要想针对性地影响消费者购买路径的每个过程,我们就需要把这四层的数据分析整合,才能制定一个更全面的营销方案。
以下,我们将分享一个真实的案例,让广告主明白应当如何打通各层数据,制定覆盖消费者购买路径的精准定位的营销方案。
案例分享。
挑战:客户已经使用了网站再定向技术来实现一个较好的roi,但是,从再站内定向所带动的交易数量开始有下降的趋势。
优化策略︰利用多重数据的整合,提升转化漏斗每一阶段的人群数目,以提升总转化量。
第一步:网站再定向。
广告主会发现网站内再定向带来的购买转化量有限,这是因为大部份广告主只会再定向曾经将商品加入购物车的访客。要想提升网站再定向的效果,最优的方法是根据用户浏览过的页面进行属性分类,并呈现具有针对性的内容。具体参考下图:
有了全面的追踪和分类,再定向受众数量的基数大幅增加。在短短两个星期内,交易数量显着提升,尤其是来自老访客的成交量更是大幅提升44%。
一方面,再定向可以有效地召回老访客,增大重复进入网站及购买的可能性。但同时,广告主还应该考虑怎么能增加新访客,以保证转化漏斗有足够的新增流量。
首先,我们利用搜索关键词捕捉有兴趣的用户,然后储存有关的用户数据,最后,在交易平台上将合适的广告呈现给该用户。此外,我们还会关注第三方受众分类数据中那些有着同样行为特征的用户信息,整合在一起进行精准投放。
在进行搜索再定向及购买受众数据后,新客户所带来的成交大幅度上升254%,广告效果花费cpa下降29%,同时增加该网站整体的浏览量。
第三步:利用机器学习(machinelearning)进一步扩大客户的数量。
用户来进行定位广告投放。xmo的算法可以对比客户的crm消费者数据与第三方受众数据,并预测出哪些网络用户会有特定的购买倾向。在这个案例中,xmo能通过机器学习来不断产生新的受众,平均每周能够细分出一个有着230万样本的人群。通过将广告投放到我们已有的目标受众群和由机器学习锁定的新目标受众,我们可以看到非常喜人的广告效果,虽然cpa轻微上升14%,但新客户成交量大幅增长26%说明了机器学习能有效地为广告主发掘新客户。
通过机器学习来抓取现有数据的特征来预测未知的概率分布,找到新的具有相同特征的数据并加入库中。机器学习中最关键的就是开发出能智能识别复杂模式并能智能化决策的算法。
观点总结。
多渠道数据的整合可以在两方面帮助广告主提高广告表现。
首先,此举可以增加广告受众总数,并会为广告主赢得源源不断的访问量。第二,多渠道数据整合后的定向还能促进消费者购买漏斗的每一个过程,广告主通常利用网站再定向技术来召回“购物车放弃者”或者流失的老客户,但实际上,广告主应该把注意力放在现有客户和新客户的比例。总而言之,从搜索动机数据,到受眾分类数据,到最终的机器学习,都能促进购买漏斗的顶端访客数量的增加。结合上创意的策略定制、精准的位置选择,客户的转化率将会提高,广告主也将挖掘出更多的商机。
数据分析师财务工作总结个人【第六篇】
1、热爱并忠诚于人民的教学事业,教学态度认真,教风扎实,严格遵守学校的规章制度。
2、认真备课。
不但备学生们而且备教材备教法,根据教材内容及学生们的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生们注意力的有趣教具,课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。
3、增强上课技能,提高教学质量。
使讲解清晰化,条理化,准确化,条理化,准确化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生们的积极性,加强师生交流,充分体现学生们的主作用,让学生们学得容易,学得轻松,学得愉快。
注意精讲精练,在课堂上老师讲得尽量少,学生们动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生们学习需求和学习能力,让各个层次的学生们都得到提高。现在学生们普遍反映喜欢上课数学课。
每周坚持集体备课,保证每次都有收获,真正为提高高一级的数学成绩而努力。要求所有老师用电脑备教案,尽量并且实现资源共享共同研究、共同进步。在教学上,坚持教学研究,共同讨论,同时,多听课,学习别人的优点,克服自己的不足。
4、在课堂授课中,坚持启发式教学,坚持向45分钟要质量。
以学生们为主体,以训练为主线。教学过程重视知识与技能,学习过程和方法,情感态度与价值观,培养学生们自主学习,合作学习,探究性学习的精神。
5、真批改作业:布置作业做到精读精练。
数据分析师财务工作总结个人【第七篇】
未成年人是祖国未来的建设者,是*特色事业的接班人。我国现有18岁以下的未成年人约亿人,他们的成长状况,直接关系着国家的前途和民族的命运。今天,随着生子女的逐渐增多,随着市场经济的迅猛发展以及社会结构从传统向现代的迅速转型,未成年人的成长受到了前所未有的关注,同时也经受着巨变中的社会环境的不断考验。因此,全面、科学、深刻地认识未成年人成长的社会环境具有极为深远的意义。针对目前未成年人成长环境堪忧的现象,顺应人民群众对净化未成年人成长环境的强烈呼声,20xx年2月26日,*、*下发了《关于进一步加强和改进未成年人思想道德建设的若干意见》,其中第九个方面强调提出“净化未成年人的成长环境”。在未成年人保护法颁布10周年座谈会上也着重指出应“依法为未成年人营造良好成长环境”。在6月18日召开的“武汉市加强和改进未成年人思想道德建设工作会议”上,湖北省副*、武汉市*陈训秋就为未成年人营造健康成长的良好环境提出了要抓好“一净、二创、三育”。“一净”即净化传媒;“二创”即要创建“无毒社区”和“无艾(滋病)社区”;“三育”即紧紧抓住学校教育、家庭教育、社会教育这三个重要环节。为青少年成长创造良好的环境正成为时代的要求。顺应时代的需求,对未成年人成长环境的研究也不断提上日程,成为当前优化青少年成长环境的一项迫切需要。
2、现实意义。
近年来,全国各地连续发生的各类安全事故、青少年犯罪、权利维护、儿童厌学及退学事件表明,青少年的成长环境受到严峻挑战。在这种情况下,探讨青少年成长环境,将之监督评估的标准和预警机制定量化、操作化,不仅能将营造青少年成长的健康环境落到实处,而且能创造性的形成青少年成长环境的监测评估系统和预警机制。
3、前瞻性。
4、开拓性。
多年来,国内研究青少年健康成长只注重研究一个或几个方面的.问题,而没有形成全方位研究的一个理论体系和立体模型,使我们对青少年成长环境的预测总处于被动地位。本项目将突破青少年成长环境的单向思维和传统研究方式,不仅研究青少年成长环境的有利因素,同时研究青少年成长环境的不良因素,并通过对两者正负影响的对比来映青少年成长总环境的健康状况,为青少年成长环境的研究提供新的视野,使之更加科学化。
二、项目基础。
支持此项目完成主要基于我们现在已拥有智力基础、组织基础、工作基础。
1、智力基础。
此项目是武汉市青少年教育办公室、共青团武汉市、武汉学社会学研究所合作完成。武汉学社会学研究所在此领域具有较强的人才智力优势,主持此次项目研究的周运清教授竖内知名的社会学家,也是20xx年“武汉市青少年成长环境的监测评估系统及其应用”研究的主持人。
2、组织基础。
数据分析师财务工作总结个人【第八篇】
1、强化理论和业务的学习。我重视加强理论和业务知识学习,在工作中,坚持一边工作一边学习,不断提高自身综合业务素质水平,认真学习工作业务知识,并结合自己在实际工作中存在的不足有针对性地进行学习,并且参加统计职业资格考试,明确了统计员的工作职责。
2、在工作以来,我始终坚持严格要求自己,勤奋努力,时刻牢记在自己平凡而普通的工作岗位上,努力做好本职工作。在具体工作中,我努力做好领导交给的每一个工作,分清轻重缓急,科学安排时间,按时、按质、按量完成任务。
3、每天及时、准确按销售合同或出入库单的明细填写统计台帐,并及时作好数据的备份。
4、每月底根据本月实际发生情况向总部报送营业收入快报;产值指标月报;劳动工资及保障情况月报;主要产品产、销、存情况月报;能源消费月报表,并存档。
5、年底将部分数据用表格的形式进行汇总与分析。主要有《产成品交库情况统计表》、《公司人员统计表》、《劳动工资及保障情况统计表》、《年度经济活动分析》。
6、参加汇报了《关于做好特色产业中小企业发展资金项目》《xx省工业结构调整项目》的申报工作。
7、每周五向省工信委汇报项目建设完成情况,每月底向省科工局汇报项目进展情况及项目建设存在的问题,每月初向港区经发局、招商局汇报项目完成投资情况和建设完成情况。
1、在工作中,虽然我不断加强理论知识的学习,努力使自己在各方面走向熟练,但由于自身学识、能力、思想、心理素质等的局限,导致在平时的工作中比较死板、心态放不开,工作起来束手束脚,对工作中的一些问题没有全面的理解与把握。同时由于个人不爱说话,与同事们的沟通和交流很少,工作目标不明确,并且遇到问题请教不多,没有做到虚心学习。
2、身为新时代的大学生,却没有青年人应有的朝气,学习新知识、掌握新东西不够。领导交办的事基本都能完成,但自己不会主动牵着工作走,很被动,而且缺乏工作经验,独立工作能力不足。在工作中不够大胆,总是在不断学习的过程中改变工作方法,而不能在创新中去实践,去推广。
1、努力完成本职工作之余,学习更多有关财务、统计方面的知识,以提升自己专业学识。
2、积极参加一些和专业有关的培训,有效提高对统计数据的准确性,并做好数据的登记、上报与分析。
3、在原有的各种统计报表基础上,对一些没有实际意义的表格进行改进,并对统计数字的准确性进行加强。
今后工作中我将努力奋斗,无论自己手头的工作有多忙,都服从公司领导的工作安排,遇到工作困难,及时与领导联系汇报,并寻找更好解决问题的办法,继续巩固现有成绩,针对自身的不足加以改进,争取做的更好。