数据分析师工作总结范文【推荐8篇】

网友 分享 时间:

【请您参阅】下面供您参考的“数据分析师工作总结范文【推荐8篇】”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

数据分析师工作总结【第一篇】

而数据分析也越来越受到领导层的重视,借助报表告诉用户什么已经发生了,借助olap和可视化工具等分析工具告诉用户为什么发生了,通过dashboard监控告诉用户现在在发生什么,通过预报告诉用户什么可能会发生。数据分析会从海量数据中提取、挖掘对业务发展有价值的、潜在的知识,找出趋势,为决策层的提供有力依据,为产品或服务发展方向起到积极作用,有力推动企业内部的科学化、信息化管理。

(1)facebook广告与微博、sns等网络社区的用户相联系,通过先进的数据挖掘与分析技术,为广告商提供更为精准定位的服务,该精准广告模式收到广大广告商的热捧,根据市场调研机构emarketer的数据,facebook年营收额超过20亿美元,成为美国最大的在线显示广告提供商。

(2)hitwise发布会上,亚太区负责人john举例说明:亚马逊30%的销售是来自其系统自动的产品推荐,通过客户分类,测试统计,行为建模,投放优化四步,运营客户的行为数据带来竞争优势。

此外,还有好多好多,数据分析,在营销、金融、互联网等方面应用是非常广泛的:比如在营销领域,有数据库营销,精准营销,rfm分析,客户分群,销量预测等等;在金融上预测股价及其波动,套利模型等等;在互联网电子商务上面,百度的精准广告,淘宝的数据魔方等等。类似成功的案例会越来越多,以至于数据分析师也越来越受到重视。

然而,现实却是另一种情况。我们来看一个来自微博上的信息:在美国目前面临14万~19万具有数据分析和管理能力的专业人员,以及150万具有理解和决策能力(基于对海量数据的研究)的管理人员和分析人员的人才短缺。而在中国,受过专业训练并有经验的数据分析人才,未来三年,分析能力人才供需缺口将逐渐放大,高级分析人才难寻。也就是说,数据分析的需求在不断增长,然而合格的为企业做分析决策的数据分析师却寥寥无几。好多人想做数据分析却不知道如何入手,要么不懂得如何清洗数据,直接把数据拿来就用;要么乱套模型,分析的头头是道,其实完全不是那么回事。按俗话说就是:见过猪跑,没吃过猪肉。

为此,我对自己的规划如下:

第一步:掌握基本的`数据分析知识(比如统计,概率,数据挖掘基础理论,运筹学等),掌握基本的数据分析软件(比如,vba,matlab,spss,sql等等),掌握基本的商业经济常识(比如宏微观经济学,营销理论,投资基础知识,战略与风险管理等等)。这些基础知识,在学校里尽量的学习,而且我来到了和君商学院,这样我可以在商业分析、经济分析上面领悟到一些东西,增强我的数据分析能力。

第二步:参与各种实习。研一开始我当时虽然有课,不过很幸运的找到一份一周只需去一两天的兼职,内容是为三星做竞争对手分析,当然分析框架是leader给定了,我只是做整合资料和往ppt里填充的内容的工作,不过通过兼职,我接触到了咨询行业,也向正式员工学习了很多商业分析、思考逻辑之类的东西。之后去西门子,做和vba的事情,虽然做的事情与数据分析无关,不过在公司经常用vba做一些自动化处理工作,为自己的数据分析工具打好了基础。再之后去了易车,在那里兼职了一个多月,参与了大众汽车销量数据短期预测的项目,一个小项目下来,数据分析的方法流程掌握了不少,也了解了企业是如何用一些时间序列模型去参与预测的,如何选取某个拟合曲线作为预测值。现在,我来到新的地方实习,也非常幸运的参加了一个央企的码头堆场优化系统设计,其实也算数据分析的一种吧,通过码头的数据实施调度,通过码头的数据进行决策,最后写成一个可操作的自动化系统。而这个项目,最重要的就是业务流程的把握,我也参与项目最初的需求调研,和制定工作任务说明书sow,体会颇多。

第三步:第一份工作,预计3-5年。我估计会选择咨询公司或者it公司吧,主要是做数据分析这块比较强的公司,比如fico,埃森哲,高沃,瑞尼尔,ibm,ac等等。通过第一份工作去把自己的知识打得扎实些,学会在实际中应用所学,学会数据分析的流程方法,让自己成长起来。

第四步:去自己喜欢的一个行业,深入了解这个行业,并讲数据分析应用到这个行业里。比如我可以去电子商务做数据分析师。我觉得我选择电子商务,是因为未来必将是互联网的时代,电子商务必将取代传统商务,最显著的现象就是传统零售商老大沃尔玛正在受到亚马逊的挑战。此外,电子商务比传统的零售商具有更好的数据收集和管理能力,可以更好的跟踪用户、挖掘潜在用户、挖掘潜在商品。

第五步:未知。我暂时没有想法,不过我希望我是在一直的进步。

能力:

1、一定要懂点战略、才能结合商业;。

2、一定要漂亮的presentation、才能buying;。

3、一定要有globalview、才能打单;。

4、一定要懂业务、才能结合市场;。

5、一定要专几种工具、才能干活;。

6、一定要学好、才能有效率;。

7、一定要有强悍理论基础、才能入门;。

8、一定要努力、才能赚钱;最重要的:

数据分析师工作总结【第二篇】

大家了解过证券数据分析师这个职业吗?这是隶属金融管理学的一个专业型非常强的专业,刚刚专业优秀毕业生可以在证券公司从事分析师的工作!以下是:证券数据分析师简历欢迎大家参考!

三年以上工作经验 | 男 | 26岁(1985年10月8日)

居住地:xx

电话:xxx

e-mail:xx@

最近工作 [ x年x个月 ]

公司:xx金融证券有限公司

行业:金融/投资/证券

职位:证券分析师 最高学历

学历:本科

专业:金融学

学校:xx理工大学

在证券公司任职***年,对于股票投资具有深入的研究,善于数据挖掘和财务分析,对于国家政策和经济形势发展具有敏锐的观察力。具有出色的逻辑思维能力和写作能力,曾在知名财经杂志发表文章数篇,得到读者的欢迎。

能够承受巨大的工作强度,抗压能力强,工作责任心高,团队合作意识佳,希望在证券行业继续发展。

求职意向

到岗时间: 一周以内

工作性质: 全职

希望行业: 金融/投资/证券

目标地点: 西安

期望月薪: 面议/月

目标职能: 证券分析师

20xx /x—至今:xx金融证券有限公司[ x年x个月]

所属行业:金融/投资/证券

研发部 证券分析师

1、 负责通过股市报告会、面谈等形式,营销理财服务;

2、 负责分析目标板块的上市公司的基本面,列出投资原因,并给出风险提示;

3、 负责宏观经济、政策走向分析及解读;

4、 负责协助基金经理,对持仓比重、结构、品种做出建议;

5、 负责协助其他分析师进行投资组合的配置。

20xx /x--20xx /x:xx金融证券有限公司 [ x年x个月]

所属行业:金融/投资/证券

市场部 证券分析师

1、 负责为客户提供投资理财咨询;

2、 负责组建及管理投资顾问团队,维护投资渠道;

3、 负责维护客户关系,推广并销售公司的金融理财产品;

4、 负责通过数据、技术面的.分析来进行股票买卖的实盘操作;

5、 负责定期召开投资报告会,培训客户经理的投资分析知识。

20xx /x--20xx /x:xx金融有限公司 [ xx个月]

所属行业: 金融/投资/证券

投资部 证券分析师

2、 负责跟踪****行业动态,并对行业内变化个股做出分析评价;

3、 负责维护客户,为客户提供咨询服务;

4、 负责***基金的交易,并指导交易员完成交易指令;

5、 负责培训下属员工以及分配部门任务。

20x x/x --20xx /x xx理工大学 金融学 本科

语言能力

英语(良好) 听说(熟练),读写(良好)

-->

-->

-->

-->

-->

-->

-->

数据分析师工作总结【第三篇】

数据分析师大多是支撑运营和决策的,但是大多都是提供数据,分析的较少。我说的分析是给出意见的分析。近期,我也在招聘数据分析师,遇到一些问题,来面试的朋友,要么就是工具的使用者,业务非常不熟悉。要么是就是链条太短,只是做网站端和销售端,对供应链、客服等非常不熟悉。

这个题目就是开放的问一个销售问题,看分析师如何给出相关的意见或者建议。当然这不是分析范畴,但是我觉得分析师既然是做运营支撑、甚至决策,那么一些基础的销售理念是应该有的。

题目:100斤苹果怎么卖,可以卖的钱又多,卖的又快?

开题:此题目意在说如何从商品的角度去考虑如何销售的问题,传统的销售方式就是经典的4p理论。渠道,商品,价格,促销。而此问题意在从商品,价格,促销的角度去问面试者问题。

题注:

1. 如果回答者答的问题说的过多,比如说渠道如何做,如果做售后,如何二次营销,范围就扩大了。

2. 如果回答者的回答过于泛,或者理论的东西比较多,或者听着非常正确而不给出解决方案,那不适合一线分析师。

上面两项是减分项。

刀刀的解答:

1、渠道是重要

用户考虑暂且放在渠道里,因为用户必须依赖渠道实现链接。但就此问题来说,有点跑题,问的是卖苹果,用户考虑一般先考虑需求和消费场景,所以不分享渠道的做法。

2、商品自己分堆

最简单,一堆贵,一堆便宜。苹果不分拣。卖个差不多再重分,46开分。

解读:利用价格做出价格歧视的感念,同时告诉消费者4的商品比较好卖,这样一个明确的指向。

3、商品拆分

按好坏分堆,好苹果贵30%。其余的分两堆,一般的常规卖,最差的贵50%,并贴上标签如涩苹果之类。

解读:劣质商品只是品质不好,不是不能卖高价,关键是你要告诉别人这是稀缺的。真实说明商品特征,不要做多,好的商品还是要高价的,稀缺商品要更贵。一般的商品就这样买。但是注意结合第四条。

4、时间因素

一般早上要比晚上贵,水果尽量当天卖完,所以在晚上8点后开始半价卖。

解读:快和多都是必须的,水果隔夜很多都会坏。晚上8点是大家出来遛弯的时候,可以做清仓了。不留呆滞库存是关键,高周转是关键。手里最好留的是钞票,而不是货物。

5、地点

这个本来不想说,还是说一下,火车站和汽车站绝对卖不出去,摊位没有。最重要的是你见过这种地方卖水果的销售有好的么?好地方在地铁口,菜市口,学校门口。

解读:人流多并不代表需求好,菜市场门口绝对比火车站好。为什么,火车站贵这是大家都知道的,再者,谁没事到火车站去买水果啊。菜市场还是做长久生意的地方,学校门口,地铁口大家多观察就知道了。

商品这个东西可以玩的很多。留几句话:

不要卖货源不稳定的某类商品。

坚决下架无法销售占位置的`商品。

主推非标准品。

流行品一定是打折卖的。

via:庖丁的刀(外贸电商分析师。关注外贸电商b2c,国内大型零售电商平台,资深数据分析师)

随着大数据概念的火热,数据科学家这一职位应时而出,那么成为数据科学家要满足什么条件?或许我们可以从国外的数据科学家面试问题中得到一些参考,下面是77个关于数据分析或者数据科学家招聘的时候会常会的几个问题,供各位同行参考。

1、你处理过的最大的数据量?你是如何处理他们的?处理的结果。

2、告诉我二个分析或者计算机科学相关项目?你是如何对其结果进行衡量的?

3、什么是:提升值、关键绩效指标、强壮性、模型按合度、实验设计、2/8原则?

4、什么是:协同过滤、n-grams, map reduce、余弦距离?

6、如何设计一个解决抄袭的方案?

7、如何检验一个个人支付账户都多个人使用?

8、点击流数据应该是实时处理?为什么?哪部分应该实时处理?

11、你是如何处理缺少数据的?你推荐使用什么样的处理技术?

12、你最喜欢的编程语言是什么?为什么?

13、对于你喜欢的统计软件告诉你喜欢的与不喜欢的3个理由。

14、sas, r, python, perl语言的区别是?

15、什么是大数据的诅咒?

16、你参与过数据库与数据模型的设计吗?

17、你是否参与过仪表盘的设计及指标选择?你对于商业智能和报表工具有什么想法?

18、你喜欢td数据库的什么特征?

22、什么是哈希表碰撞攻击?怎么避免?发生的频率是多少?

23、如何判别mapreduce过程有好的负载均衡?什么是负载均衡?

26、为什么朴素贝叶斯差?你如何使用朴素贝叶斯来改进爬虫检验算法?

27、你处理过白名单吗?主要的规则?(在欺诈或者爬行检验的情况下)

28、什么是星型模型?什么是查询表?

29、你可以使用excel建立逻辑回归模型吗?如何可以,说明一下建立过程?

33、普通线性回归模型的缺陷是什么?你知道的其它回归模型吗?

34、你认为叶数小于50的决策树是否比大的好?为什么?

35、保险精算是否是统计学的一个分支?如果不是,为何如何?

36、给出一个不符合高斯分布与不符合对数正态分布的数据案例。给出一个分布非常混乱的数案例。

37、为什么说均方误差不是一个衡量模型的好指标?你建议用哪个指标替代?

42、你如何建议一个非参数置信区间?

44、什么是归因分析?如何识别归因与相关系数?举例。

45、如何定义与衡量一个指标的预测能力?

47、如何创建一个关键字分类?

48、什么是僵尸网络?如何进行检测?

50、什么时候自己编号代码比使用数据科学者开发好的软件包更好?

52、什么是概念验证?

53、你主要与什么样的客户共事:内部、外部、销售部门/财务部门/市场部门/it部门的人?有咨询经验吗?与供应商打过交道,包括供应商选择与测试。

54、你熟悉软件生命周期吗?及it项目的生命周期,从收入需求到项目维护?

55、什么是cron任务?

56、你是一个独身的编码人员?还是一个开发人员?或者是一个设计人员?

57、是假阳性好还是假阴性好?

58、你熟悉价格优化、价格弹性、存货管理、竞争智能吗?分别给案例。

59、zillow’s算法是如何工作的?

60、如何检验为了不好的目的还进行的虚假评论或者虚假的fb帐户?

61、你如何创建一个新的匿名数字帐户?

62、你有没有想过自己创业?是什么样的想法?

63、你认为帐号与密码输入的登录框会消失吗?它将会被什么替代?

65、哪位数据科学有你最佩服?从哪开始?

66、你是怎么开始对数据科学感兴趣的?

67、什么是效率曲线?他们的缺陷是什么,你如何克服这些缺陷?

68、什么是推荐引擎?它是如何工作的?

69、什么是精密测试?如何及什么时候模拟可以帮忙我们不使用精密测试?

70、你认为怎么才能成为一个好的数据科学家?

71、你认为数据科学家是一个艺术家还是科学家?

73、给出一些在数据科学中“最佳实践的案例”。

74、什么让一个图形使人产生误解、很难去读懂或者解释?一个有用的图形的特征?

75、你知道使用在统计或者计算科学中的“经验法则”吗?或者在商业分析中。

76、你觉得下一个20年最好的5个预测方法是?

-->

-->

-->

-->

-->

-->

-->

数据分析师工作总结【第四篇】

述职报告是述职者向上自己的上级领导和群众汇报自己守职尽责和施政情况的报告,如何写述职报告。述职报告根据不同时间范围,又可分为若干种不同的类型,如年度述职报告、任期述职报告、阶段述职报告等。因为时间不同,述职报告的特点也不同,它们在写作上各有其侧重,但基本内容和要求是一样的。

一、述职报告的内容。

不同性质、不同层次的干部所写的内容是不同的,但一般的述职报告都要写如下内容:

(一)身份和岗位职责。

对自己的身份和岗位职责及其工作目标,要首先简明扼要地叙述清楚,不然群众和领导对其报告无法衡量。因为同一层次、同一级职务,不同部门的干部其职责范围并不一样,所以述职报告开头必须首先明确自己的岗位职责和工作目标,这样领导和群众对述职者才能有清楚的认识,正确的考评。

(二)履行职责的情况。

1、主要做了哪些工作。叙述工作时要恰当分类,把所做的工作按大小项并列起来,某大项工作内容如果很多,可再分小项。把工作项目按逻辑顺序排列清楚,积压项内容恰当归类。

2、做工作的指导思想。给合如何贯彻党和国家的方针、政策,写某项工作为什么要这样抓紧,要以现实观念和未来眼光作简要的理论阐述。

3、可以体现工作成果的事实和数据。如今昔的变化、数字的比较、计划指标与完成指标的比较、群众的情绪和反映等。

4、在自己职权范围内,有哪些开拓性的工作。包括调查研究工作,自己有哪些创见,为实现自己的主张做了哪些努力,遇到了哪些困难,是怎样完成的,述职报告《如何写述职报告》。

5、工作中的缺点或失误有哪些,其中主观上应负的责任是什么,客观原因有哪些,从中得出什么教训,等等。

(三)今后的打算。

对今后的工作有什么计划安排和打算可简要述及。

上述内容虽然按一定顺序列出来,但这并不代表述职报告的层次。关于述职报告的结构形式,可按工作项目归类写,也可按时间发展顺序写或按内容分类集中(即条块结合)来写。不要千篇1律,要根据具体内容需要选择不同的结构形式。

二、应注意的几点。

(一)述职报告不同于工作总结。

总结侧重提出经验、教训、体会,着眼的是整体的事迹,因而在表达上侧重用分析论证的方式。而述职报告则侧重在对客观情况实事求是地叙述上,以政绩为依据,体现个人的能力和贡献。在谈成绩的同时或之后可以谈经验体会,但经验体会不是述职报告的主要内容。

(二)述职报告不同于工作汇报。

工作汇报着眼的是工作,以事为主,而述职报告则着眼于个人方面的内容,以个人为主体,见人见事。因而写时要很好的`把握分寸,并避免两方面的疏忽:

一是不能贪天之功为已有,把别人的贡献记在自己账上;。

二是不要把自己的成绩遗漏掉。所以写述职报告本身也需要有一定的识别能力和分析能力。

在单位的整体工作中,要能正确地、准确地认识自己的位置,认识自己的成绩和贡献,这也是写好述职报告的先决条件。

(三)述职报告是应用文。

述职报告是表述自己的政绩和工作活动情况的,所以要用朴实真切、严肃不苟的语言如实地把事情表述出来,避免空话、套话,并且使人能够准确理解、明白所述的意思。

(四)明确位置,掌握主从。

每个干部都有自己的位置,在写述职报告时要围绕自己的工作职责,去说工作内容。写述职报告是以“我”为组织材料,无论涉及上级或下级,从表述的角度讲都属于从属地位。不可倒从为主,也不可变主为从。注意这两点,掌握好略于人、说于已的原则,才能把有限的文字恰当地用于叙述自己的政绩与工作活动。

(五)突出重点,要有新意。

述职报告不是公布“流水账”,事无巨细,“西瓜芝麻一起抓”。而是要写出规定考核期内工作的基本风貌和主旋律,并且要有新意。在改革开放的新形势下,平时工作也会增添许多新经验、新体会,因而要写出善于研究新情况、新课题不断进取的工作思路,并且要把理论和实际结合起来谈,以体现自己的工作能力和政策水平。

撰写述职报告一般不超过3000字。述职报告是述职的依据,也是个人填写考核登记表的基础,书面材料应避免繁琐,口述时可扩展。把握以上几点,基本能写出一个较好的述职报告。

数据分析师工作总结【第五篇】

未成年人是祖国未来的建设者,是*特色事业的接班人。我国现有18岁以下的未成年人约亿人,他们的成长状况,直接关系着国家的前途和民族的命运。今天,随着生子女的逐渐增多,随着市场经济的迅猛发展以及社会结构从传统向现代的迅速转型,未成年人的成长受到了前所未有的关注,同时也经受着巨变中的社会环境的不断考验。因此,全面、科学、深刻地认识未成年人成长的社会环境具有极为深远的意义。针对目前未成年人成长环境堪忧的现象,顺应人民群众对净化未成年人成长环境的强烈呼声,20xx年2月26日,*、*下发了《关于进一步加强和改进未成年人思想道德建设的若干意见》,其中第九个方面强调提出“净化未成年人的成长环境”。在未成年人保护法颁布10周年座谈会上也着重指出应“依法为未成年人营造良好成长环境”。在6月18日召开的“武汉市加强和改进未成年人思想道德建设工作会议”上,湖北省副*、武汉市*陈训秋就为未成年人营造健康成长的良好环境提出了要抓好“一净、二创、三育”。“一净”即净化传媒;“二创”即要创建“无毒社区”和“无艾(滋病)社区”;“三育”即紧紧抓住学校教育、家庭教育、社会教育这三个重要环节。为青少年成长创造良好的环境正成为时代的要求。顺应时代的需求,对未成年人成长环境的研究也不断提上日程,成为当前优化青少年成长环境的一项迫切需要。

2、现实意义。

近年来,全国各地连续发生的各类安全事故、青少年犯罪、权利维护、儿童厌学及退学事件表明,青少年的成长环境受到严峻挑战。在这种情况下,探讨青少年成长环境,将之监督评估的标准和预警机制定量化、操作化,不仅能将营造青少年成长的健康环境落到实处,而且能创造性的形成青少年成长环境的监测评估系统和预警机制。

3、前瞻性。

4、开拓性。

多年来,国内研究青少年健康成长只注重研究一个或几个方面的.问题,而没有形成全方位研究的一个理论体系和立体模型,使我们对青少年成长环境的预测总处于被动地位。本项目将突破青少年成长环境的单向思维和传统研究方式,不仅研究青少年成长环境的有利因素,同时研究青少年成长环境的不良因素,并通过对两者正负影响的对比来映青少年成长总环境的健康状况,为青少年成长环境的研究提供新的视野,使之更加科学化。

二、项目基础。

支持此项目完成主要基于我们现在已拥有智力基础、组织基础、工作基础。

1、智力基础。

此项目是武汉市青少年教育办公室、共青团武汉市、武汉学社会学研究所合作完成。武汉学社会学研究所在此领域具有较强的人才智力优势,主持此次项目研究的周运清教授竖内知名的社会学家,也是20xx年“武汉市青少年成长环境的监测评估系统及其应用”研究的主持人。

2、组织基础。

数据分析师工作总结【第六篇】

5、参与推荐系统建设,直接向cto汇报。

1、全日制大学本科及以上学历,数学、统计、计算机等相关专业;

2、3年以上数据统计相关经验;

3、强烈的责任心,良好的沟通能力,细致耐心的工作态度,为人开朗乐观;

4、良好的学习能力,逻辑清晰,对数据敏感;

5、具有简单开发与数据挖掘算法基础优先优先。

数据分析师工作总结【第七篇】

虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。

2、数据查询员/处理员:数据处理没问题,缺乏数据解读能力。

这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并且可以通过监控系统或者原始的数据,处理得到这些数据。统计学的方法,这批人还是很精通的,统计学的工具,他们也是用起来得心应手,你让他们做一下因子分析,聚类肯定是没问题,各类检验也是用的炉火纯青。他们的不足是:1、如果不告诉他们命题,那么他们就不知道该应用什么样的方法去得到结论了。2、对于数据的处理没问题,但是却没有一个很好的数据解读能力。只能在统计学的角度上解释数据。

数据分析师这群人,对于数据的处理已经不是问题了,他们的重点已经转化到怎么样去解读数据了,同样的数据,在不同人的眼中有不一致的内容。好的数据分析师,是能通过数据找到问题,准确的定位问题,准确的找到问题产生的原因,为下一步的改进,找到机会点的人。往往科班出身的人,欠缺的不是在处理数据上,而是在解读数据上,至于将数据和产品结合到一起,则是其更缺少的能力了。

4、数据应用师:将数据还原到产品中,为产品所用。

5、数据规划师:走在产品前面,让数据有新的价值方向。

1.标准报表。

回答:发生了什么?什么时候发生的?

示例:月度或季度财务报表。

我们都见过报表,它们一般是定期生成,用来回答在某个特定的领域发生了什么。从某种程度上来说它们是有用的,但无法用于制定长期决策。

2.即席查询。

回答:有多少数量?发生了多少次?在哪里?

示例:一周内各天各种门诊的病人数量报告。

即席查询的最大好处是,让你不断提出问题并寻找答案。

3.多维分析。

回答:问题到底出在哪里?我该如何寻找答案?

示例:对各种手机类型的用户进行排序,探查他们的呼叫行为。

通过多维分析(olap)的钻取功能,可以让您有初步的发现。钻取功能如同层层剥笋,发现问题所在。

4.警报。

回答:我什么时候该有所反应?现在该做什么?

示例:当销售额落后于目标时,销售总监将收到警报。

5.统计分析。

回答:为什么会出现这种情况?我错失了什么机会?

示例:银行可以弄清楚为什么重新申请房贷的客户在增多。

这时您已经可以进行一些复杂的分析,比如频次分析模型或回归分析等等。统计分析是在历史数据中进行统计并总结规律。

6.预报。

回答:如果持续这种发展趋势,未来会怎么样?还需要多少?什么时候需要?

示例:零售商可以预计特定商品未来一段时间在各个门店的需求量。

预报可以说是最热门的分析应用之一,各行各业都用得到。特别对于供应商来说,能够准确预报需求,就可以让他们合理安排库存,既不会缺货,也不会积压。

7.预测型建模。

回答:接下来会发生什么?它对业务的影响程度如何?

示例:酒店和娱乐行业可以预测哪些vip客户会对特定度假产品有兴趣。

如果您拥有上千万的客户,并希望展开一次市场营销活动,那么哪些人会是最可能响应的客户呢?如何划分出这些客户?哪些客户会流失?预测型建模能够给出解答。

8.优化。

回答:如何把事情做得更好?对于一个复杂问题来说,那种决策是最优的?

示例:在给定了业务上的优先级、资源调配的约束条件以及可用技术的情况下,请您来给出it平台优化的最佳方案,以满足每个用户的需求。

优化带来创新,它同时考虑到资源与需求,帮助您找到实现目标的最佳方式。

数据分析师工作总结【第八篇】

位于*东南部的福建(三明、泉州、福州、宁德)、江西(南丰、广川)两省山岳地区,有着数量较多的一种以生土为主要建筑材料、生土与木结构相结合并不同程度使用石材的“土堡”建筑。这些土堡建筑以合院式建筑为主,规模宏,造型奇特,结构精巧,或建在海拔较高的山岗(高岗型),或离村庄不远的山坡(坡地型),或建在水田当中(田中型),或土堡与民居建在一起(混合型),与当地其他传统低矮民居组合成小不同的村落,服务于家族或村落的聚居防御需要。它们比福建土楼历史更悠久,既有着悠久的文化历诗统,又与周边自然环境完美融合,构成一组组和谐美妙的景观。其中,福建土堡最具代表性,数量也最多,而福建土堡又以三明市田、尤溪和永安三县留存数量最多、保存最完整、种类最齐全。

从20xx年至20xx年的五年时间里,三明土堡通过土堡课题专项调研、第三次全国文物普查、拍摄土堡资料宣传电视片、召开*福建土堡全国学术研讨会、举办土堡民俗文化节、福建土堡风光摄影展等系列活动,已初步摸清了三明境内土堡的基本情况:

1、土堡的创建历史:产生于隋末唐初,成熟于两宋,盛行于明清,并一直延续至今。

2、土堡的留存数量:200余座,约占总数量的十分之一。

3、范文top100土堡的建筑结构:内通廊式与合院式两种,并以合院式为主。

4、土堡的分布范围:福建、江西两省,并以福建为多;福建省内三明、泉州、福州、宁德四地市,并以三明地区为多;三明市内田、尤溪、永安、宁化、沙县、将乐、清流、明溪、泰宁、三元、梅列十一县(市、区),并以田、尤溪、永安为多。

5、土堡的主要功能:防御为主。

6、土堡的产生原因:生存需要。

二、福建土堡的认定。

关于福建土堡的定义,至今尚未有公开的认定,因此本文的定义只是个人的观点,若有谬误还请方家指正。可以从以下几个方面来探究:

1、三明土堡与土围(江西)、土楼(福建)、围拢屋(粤东)的异同,如下表。

尽管四者之间有差异,但共性是十分明显的,都具有防御性,只师能不同而已,土围、土堡以防御为主,而土楼、围拢屋以居住为主。

2、福建土堡是包括福建土楼在内的*南方乡土防御性建筑的鼻祖。

48 1884597
");