抽屉原理数学练习题精编5篇
【导言】此例“抽屉原理数学练习题精编5篇”的范文资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
抽屉原理练习题1
抽屉原理练习题
抽屉原理练习题
1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?
2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有3张牌有相同的点数?
3.有11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同
4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜。试证明:一定有两个运动员积分相同。
5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?
6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人数为多少人?
7.有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出多少只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。
8.一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了多少堆?
9.从1,3,5,……,99中,至少选出多少个数,其中必有两个数的和是100。
10.某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有多少人带苹果。
11.某个年级有202人参加考试,满分为100分,且得分都为整数,总得分为10101分,则至少有多少人得分相同?
12.名营员去游览长城,颐和园,天坛。规定每人最少去一处,最多去两处游览,至少有几个人游览的地方完全相同?
13.某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,则至少有多少人植树的株数相同?
答案:
1.将红、黄、蓝三种颜色看作三个抽屉,为保证取出的球中有两个球的颜色相同,则最少要取出4个球。3×(2-1)+1=4
2.将14种点数看作是14个抽屉,最少要抽取29张牌,方能保证其中至少有3张牌有相同的点数。14×(3-1)+1=29(扑克牌中的点数说明:A--K分别为1—13点,大小王点数相同,共14种点数。)
3.证明:A、B、C、D四类书,根据题目条件,这些学生借书的组合可能有十种,分别是:A、B、C、D、AB、AC、AD、BC、BD、CD
因为有11名学生到老师家借书,而只有10种借书情况,将这十种借书情况看作是十个抽屉,因此必有两个学生所借的书的类型相同。11÷10=1......1 1+1=2
4.证明,所谓单循环赛即每个运动员都与其它运动员进行一场比赛。即每个人要参加49场比赛,这样如果假设没有运动员积分相同,因为没有全胜,则运动员的积分就有48胜、47胜……2胜、1胜、0胜共49个积分情况,而50名运动员需要有50个不同的`积分结果,这里“49个积分情况”与“需要50个积分结果”出现了矛盾,所以假设“没有运动员积分相同”是错误的,因此一定有两个运动员积分相同。
5.方法同第3题,拿球的种类组合可以有以下六种:足球、排球、篮球、足排、足篮、排篮,这六种组合看作六个抽屉,至少有9名同学所拿的球种类是一致的。50÷6=8.....2 8+1=9
6.则参赛男生46人。
7.至少要拿出10只才能使拿出的手套中一定有两双是同颜色的。
8.至少把这些水果分成了5堆。
分四种情况:
9.至少选出51个数,其中必有两个数的和是100。
10.46乘客带苹果。
11.提示:分值从0~100,共101种可能的分值,10101÷(0+1+2+……+100)=2……1,则至少有3人得分相同。
12.至少有335个人游览的地方完全相同。
13.则至少有5人植树的株数相同。
学而不思则罔,思而不学则殆。山草香为大家分享的5篇抽屉原理数学练习题就到这里了,希望在抽屉原理练习题的写作方面给予您相应的帮助。
抽屉原理数学练习题2
1.一个联欢会有100人参加,每个人在这个会上至少有一个朋友。那么这100人中至少有个人的朋友数目相同。
2.在明年(即)出生的1000个孩子中,请你预测:
(1)同在某月某日生的孩子至少有个。
(2)至少有个孩子将来不单独过生日。
3.一个口袋里有四种不同颜色的小球。每次摸出2个,要保证有10次所摸的结果是一样的,至少要摸次。
4.有红、黄、蓝三种颜色的小珠子各4颗混放在口袋里,为了保证一次能取到2颗颜色相同的珠子,一次至少要取颗。如果要保证一次取到两种不同颜色的珠子各2颗,那么一定至少要取出颗。
5.从1,2,3…,12这十二个数字中,任意取出7个数,其中两个数之差是6的至少有对。
6.某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有人的头发根数一样多。
7.在一行九个方格的图中,把每个小方格涂上黑、白两种颜色中的一种,那么涂色相同的小方格至少有个。
8.一付扑克牌共有54张(包括大王、小王),至少从中取张牌,才能保证其中必有3种花色。
9.五个同学在一起练习投蓝,共投进了41个球,那么至少有一个人投进了个球。
10.某班有37名小学生,他们都订阅了《小朋友》、《儿童时代》、《少年报》中的一种或几种,那么其中至少有名学生订的报刊种类完全相同。
11.任给7个不同的整数,求证其中必有两个整数,它们的和或差是10的倍数。
12.在边长为1的正方形内任取51个点,求证:一定可以从中找出3点,以它们为顶点的三角形的面积不大于1/50.
13.某幼儿园有50个小朋友,现在拿出420本连环画分给他们,试证明:至少有4个小朋友分到连环画一样多(每个小朋友都要分到连环画).
《抽屉原理》数学说课稿3
××老师的《抽屉原理》一课结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。
1、本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝笔放入3个文具盒中,不管怎么放,总有一个杯子里至少放进2枝筷子”,然后交流展示,为后面开展教与学的活动做了铺垫。此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有学生的积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理:当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。
2、在教学过程中充分发挥了学生的主体性,在抽屉原理(2)的推导过程中,至少是“商+余数”,还是“商+1”个物体放进同一个抽屉。让学生互相争辩,再由学生自己想办法来进行验证,使学生更好的理解了抽屉原理。另外,本节课中,学生争先恐后的学习行为,积极参与自学、交流、合作、展示、补充、互评、提问、质疑、反思等的学习过程,“自主、合作、探究”的学习方式,给人留下了深刻的印象,学生主体地位得到了充分的落实。
3、 注意渗透数学和生活的联系。并在游戏中深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。课前老师设计一个游戏:“学生在一副去掉了大小王的扑克牌中,任意抽取五张,老师猜:总有一种花色的牌至少有两张。”这是为什么?学生很惊讶。于是,学生的积极性被调动起来了,总想接开其中的奥秘。学完抽屉原理后,让学生用学过的知识来解释这些现象,有效的渗透“数学来源于生活,又还原于生活”的理念。
商讨之处:
学生对“至少”一词的理解还显得有些欠缺,学生仅仅理解了字面上的意思,对“至少”一词的指向性还不明确,就我理解,“至少”应该是指的在每一种情况中出现的最大数中的最小数,而有学生却理解成是每一种情况中的最小数。如何让学生的理解更准确,更深刻,还需探究。
抽屉原理数学练习题4
1.8个学生解8道题目.
(1)若每道题至少被5人解出,请说明可以找到两个学生,每道题至少被过两个学生中的一个解出.
(2)如果每道题只有4个学生解出,那么(1)的结论一般不成立.试构造一个例子说明这点。
2.时钟的表盘上按标准的方式标着1,2,3,…,11,12这12个数,在其上任意做n个的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同.如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.
3.试卷上共有4道选择题,每题有3个可供选择的答案.一群学生参加考试,结果是对于其中任何3人,都有一个题目的答案互不相同.问参加考试的学生最多有多少人?
4.六个小朋友每人至少有1本书,一共有20本书,试证明:至少有两个小朋友有相同数量的书。
5.全班有40个同学,共有不到780本书,试证明:至少有2个同学有相同数量的书。
6.有5050张数字卡片,其中1张上写着1,2张上写着2,3张上写着3……100张上写着100。现在要从中抽取若干张,为了确保抽出的卡片至少有10张以上的数字完全相同,至少要抽取多少张卡片?
7.口袋中装有10种不同颜色的`珠子,每种都是100个。要想保证从袋中摸出3种不同颜色的珠子,并且每种至少10个,那么至少要摸出多少个珠子?
8.两个布袋各有12个大小一样的小球,且都是红、白、蓝各4个。从第一袋中拿出尽可能少的球,但至少有两种颜色一样的放入第二袋中;再从第二袋中拿出尽可能少的球放入第一袋中,使第一袋中每种颜色的球不少于3个。这时,两袋中各有多少个球?
9.用载重吨的汽车运送若干箱共重吨的货物,每箱货物重量相同且不超过350千克。当每箱货物多重时,需要的汽车最多?最多需要多少辆汽车?
10.某小学五年级的学生身高(按整数厘米计算),最矮的是138厘米,最高的是160厘米。如果任意从这些学生中选出若干人,那么至少要选出多少人,才能保证有5人的身高相同?
抽屉原理专项练习题5
抽屉原理专项练习题
1、学校有1300名同学,今年至少有多少名同学在同一天过生日?
2、一副扑克牌有54张,至少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?
3、一副扑克牌(大王、小王除外)从中任意抽牌,最少要抽几张,才能保证有四张牌是同一张花色的?
4、有黑色、白色、黄色的筷子各8根,混杂放在一起,黑暗中想从这些筷子之中取出颜色不同的两双筷子,至少要取出多少根才能保证达到要求?
5、有红色、白色、黑色的筷子各10根混放在一起,让你闭上眼睛去摸,
(1)你至少要摸出几根才敢保证有两根筷子是同色的?
(2)至少拿几根,才能保证有两双同色的筷子?
6. 口袋中有红、黑、白、黄球各10个,它们的外型与重量都一样,至少要摸出几个球,才能保证有4个颜色相同的球?
7. 饲养员给10只猴子分苹果,其中至少要有一只猴子得到7个苹果,饲养员至少要拿来多少个苹果?
8. 从多少个自然数中,一定可以找到两个数,它们的差是12的倍数。
9.某班37名同学,至少有几个同学在同一个月过生日?
10. 42只鸽子飞进5个笼子里,可以保证至少有一个笼子中可以有几只鸽子?
11.有尺寸、规格相同的6种颜色的袜子各20只,混装在箱内,从箱内至少取出多少只袜子才能保证有3双袜子?
12、有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出( )只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。
13、一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。最少抽( )张牌,才能保证有4张牌是同一种花色的。
14、某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,总有小朋友分到( )件的玩具。
15、一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块。
16、六年级有100名学生都订阅甲、乙、丙三种杂志中的一种。至少有( )名学生订阅的杂志种类相同。
17、班上有50名学生,将书分给大家,至少要拿( )本,才能保证至少有一个学生能得到两本。
18、某班37名同学,至少有( )个同学在同一个月过生日。
19、口袋中有红、黑、白、黄球各10个,至少要摸出( )个球,才能保证有4个颜色相同的球。
20、饲养员给10只猴子分苹果,其中至少要有一只猴子得到7个苹果,饲养员至少要拿来( )个苹果。
21、一个班有40名同学,现在有课外书125本。把这些书分给同学,总有1人至少分到( )本。
22、小丽从书架上随意拿下了13份报纸,至少有( )份报纸是同一个月的。
23、在一个11位数中,至少有( )个数位上的'数字是相同的。
24、42只鸽子飞进5个笼子里,可以保证至少有一个笼子中可以有( )只鸽子。
25、某小学有366位1995年出生的学生,那么至少有( )个同学的生日是在同一天。
26、班上有38个人,老师至少要拿( )本书,随意分给大家,才能保证一定有至少一名同学得到两本的书。
27、黑、白、黄三种颜色的袜子各有很多只,在黑暗处至少拿出( )只袜子袜子就能保证有一双是同一颜色的。
28、某小学五一班有48名同学,至少有( )个同学在同一月过生日。
29、有4个运动员练习投篮,一共投进50个球,一定有一个运动员至少投进( )个球。
30、布袋中有60块大小、形状都相同的木块,每15块涂上相同的颜色,一次至少取出( )块,才能保证其中至少有3块颜色相同。