数学反比例函数知识点通用4篇

网友 分享 时间:

【导言】此例“数学反比例函数知识点通用4篇”的范文资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

学好数学的方法【第一篇】

1.功在平时,学会总结:多做题,总结题型

考试时技巧重要,但是考试总要有平时的积累做铺垫的吧?数学的学习-平时最主要的就在于掌握知识点,多做类型题,用题目来巩固知识点,要学会用一道题型掌握一类题型。这样既节省时间,又能够灵活自如应对考试中千变万化的数学题型。

比如说数列求和部分:也就那么几个方法,构造等差等比、裂项求和、错位相减、倒序相加。有时候拿到一个题目你知道这样做,但是你不一定知道为什么要这样做,你知道这个套路就可以了。

2.考试时对试卷的把控:学会宏观把握

对于高考数学来说,大部分地区的试卷结构依次是选择题、填空题、大题。所以要根据自己实际掌握的情况,进行一个简单的分析,先易后难,把自己最有把握拿到的分拿到,那种特别难的最后再看。通过真题训练,你需要知道:选择题前几道是比较简单的,会考集合、复数、算法等(举例,仅限于个别地区试卷);从第几道题开始是比较难的,一般会考什么内容;第几道题是最难的题目。

只有这样对试卷的宏观把握,到了考场才能心里有数,并且针对自己的情况,作出具体的对策。

3.考试时间分配很重要:多拿分才是王道

有些同学是碰到一道题目,只要做不出来,就不甘心,非要把它做出来不可;还有一类学生是:一看题,不会,算了,下一道。其实这两类学生考试成绩都不会太理想,考试时一定要避免这两种极端行为,平时做题按部就班,一道一道的来,但是考试的时候以多拿分为原则。

针对这两种情况,一定要计划好自己考试的分配时间。一般来说:选择题和填空题为35-40分钟,大题一个小时15-20分钟,最后剩5-10分钟浏览考试卷,稍作检查,防止小粗心而失分。

4.熟悉题型:每种题型解题方法不一样

选择题排除,填空题猜测,大题写知识点和公式。

下面说到具体的应试技巧,当你面对一道题时,真的不知道准确答案,对于不同的题型也有不同的方法。

选择题有一个好处就是我们有四分之一对的概率,我们要做的就是提高这个概率,当然,排除肯定不可能对所有题是一个很好使的方法。填空题可以根据题干进行猜测,当然是在你不会的情况下。

对于大题,完全无从下手,也可以把你知道的知识点,或是公式写上,不一定就用到了,也能赚两分。最忌讳的就是留空白,不会就完全不动笔去写,留下一大片空白在那里,阅卷老师生气,你得分就无望了。

其实学习数学很简单,掌握了学习的方法和考试答题的技巧后,拿高分就容易多了。其实学霸并不是比大家聪明,只是更懂得学习的方法和技巧。

反比例函数知识点总结【第二篇】

反比例函数y=k/x的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。

它们关于原点对称、反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。

画反比例函数的图象时要注意的问题:

(1)画反比例函数图象的方法是描点法;

(2)画反比例函数图象要注意自变量的取值范围是k≠0,因此不能把两个分支连接起来。

k≠0

(3)由于在反比例函数中,x和y的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x轴和y轴的变化趋势。

反比例函数的性质:

y=k/x(k≠0)的变形形式为xy=k(常数)所以:

(1)其图象的位置是:

当k﹥0时,x、y同号,图象在第一、三象限;

当k﹤0时,x、y异号,图象在第二、四象限。

(2)若点(m,n)在反比例函数y=k/x(k≠0)的图象上,则点(—m,—n)也在此图象上,故反比例函数的图象关于原点对称。

(3)当k﹥0时,在每个象限内,y随x的增大而减小;

当k﹤0时,在每个象限内,y随x的增大而增大;

反比例函数知识点总结【第三篇】

一、 背景分析

1. 对教材的分析

本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

本节课前一课时是在具体情境中领会反比例函数的意义和概念 。函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。

传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。这也充分体现了重视获取知识过程体验的新课标的精神。

(1) 教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

(2) 重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

(3) 难点:探索并掌握反比例函数的主要性质。

2、对学情的分析

九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用Z+Z智能教育平台进行教学,比较形象,便于学生接受。

教学过程

一、忆一忆

师:同学们还记得我们在学习一次函数时,是怎么作出一次函数图象的吗?一次函数的图象是什么图形?

生:作一次函数的图象要采用以下几个步骤:(1)列表(2)描点(3)连线。

生乙:一次函数的图象是一条直线。

师:大家说的很好,看来大家对过去的知识掌握的很牢固,那么同学们想一下,y=4/x 是什么函数?

生:反比例函数。

师:你们能作出它的图象吗?

生:可以。

点评:复习旧知识,让学生感受到新旧知识的联系,并为后面的作反比例函数的图象做好准备。

二、作图象,试比较

师:请填写电脑上的表格,并开始在坐标纸上描点,连线。

师:再按照上述方法作y=-4/x的图象。

(学生动手操作)

师:下面大家分小组讨论:对照你们所作出的两个函数图象,找出它们的相同点与不同点。

(学生讨论交流,教师参与)

师:讨论结束,下面哪个小组的同学说说你们的看法?

生1:它们的图象都是由两支曲线组成的。

生2:y=4/x 的图象的两条曲线分布在一、三象限内,而y=-4/x 的图象的两支曲线分布在二、四象限内。

点评:这里让学生自己上台操作,既培养了学生的动手能力,又可以激发学生学好数学的兴趣。

三、细观察,找规律

师:大家都说得很好,下面我们一起观察反比例函数 y=k/x的图象,当k的发值生变化时,函数的图象发生了怎样的变化,并分小组讨论有什么规律。

(展示图象,让学生观察y=k/x 的图象,按下动画按钮,在运动中观察 值的变化与函数的图象变化之间的关系,并与同学们充分讨论)

师:请同学们谈一谈刚才讨论的结果。

生:我发现函数图象的变化与k 的值有关:当 k>0 时,在每一象限内,y随 x的增大而减小,当 k<0 时,在每一象限内 ,y随x 的增大而增大。

师:看来大家都经过了认真的思考和讨论,对规律总结的也比较完整,下面我们一起把刚才两个环节的知识点一起总结一下。

(1)反比例函数y=k/x的图象是由两支曲线所组成的。

(2)当 k>0时,两支曲线分别在一、三象限;当k<0时,两支曲线分别在二、四象限。

(3)当k>0 时,在每一象限内,y随x的增大而减小,当k<0时,在每一象限内 ,y随x 的增大而增大。

师:如果我们将反比例函数的。图象绕原点旋转180后,你会发现什么现象?这说明了什么问题?

(由学生在电脑上进行操作)

生:我发现旋转后的图象与原图象完全重合了,这说明反比例函数的图象是一个中心对称图形。

师:大家做得很好。那么,如果我们在图象上任取A、B两点,经过这两点分别作 轴、 轴的垂线,与坐标轴围成的矩形面积分别 为S1、S2,观察两个矩形面积的变化情况,并找出其中的变化规律。

题目:(1) 拖动k,使k变化,观察k不断变化过程中,矩形面积的变化情况,讨论得出结论。

(2) 拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。

生:我们发现,在同一个反比例函数中,不管k 值怎么变化,矩形的面积始终不变。

师:大家的观察很仔细,总结得也很正确。

点评:在这个环节中,既让学生动手操作,又让他们分组交流,这样既培养了他们的动手能力,又增强了他们的团结合作的意识。结论主要有学生来发现,体现了新课程理论的精神。

四、用规律,练一练

1、 课本137页随堂练习1

生:第一幅图是 y=-2/x的图象,因为在这里的 k<0,双曲线应在第二、四象限。

2、 下列函数中,其图象唯一、三象限的有哪几个?在其图象所在象限内, 的值随 的增大而增大的有哪几个?

(1) y=1/(2x)(2)y=/x(3)y=10/x(4)y=-7/(100x)

生:其中(1)(2)(3)的图象在一、三象限;(4)的图象在每一象限内,y 随x 的增大而增大。

数学反比例函数知识【第四篇】

反比例性质

1规律:反比函数与一次函数(与正比例函数相交,交点关于原点对称)相交,求线段数量关系时,切记“原点O到两交点的距离是相等的”若给出反比函数解析式,那么最终求得的结果的过程肯定要转化成关于“k”的几何意义。

2规律:一次函数与反比函数相交且两函数解析式都未知,此时一次函数所在直线与交点分别于x轴,y轴做垂线的交点所连接的线段是相互平行的,同时一次函数与反比函数的交点到一次函数与x轴,y轴的交点的距离是相等的。

3规律:题目中给出线段比例和四边形的面积求k问题,利用同底等高三角形面积与高之间的关系,面积与k之间的关系。求出k(此时不用具体求出点坐标)。

4规律:有中点时利用中点坐标公式,再根据反比函数上任何一点 处的几何意义都相同的思想转化出面积问题。

5规律:若反比例函数图像经过多个点,那么在这几点处的几何意义是相同的。根据相等的关系我们可以将等积量转化成等比量。

6规律:当反比例函数与正三角形的某一边有交点时,可以根据正三角形的特性表示出该交点的坐标,从而计算出该点的坐标得到k。

7规律:当题目给出的线段之间的数量关系时,可构造直角三角形用相似的关系具体的求出点的坐标计算k的值。

8规律:当反比例函数解析式已知,而要求图像上点的坐标问题。同长情况下用全等或相似的关系将点的坐标用同一字母代数式表示出来,再利用k的几何意义求出点坐标。

9规律:直接利用面积比和相似比之间的关系确定k值。

10规律:当一次函数与反比例函数相交有特殊角度时(30°,45°,60°)或一次函数k为( √3/3 ,√3.....)时,将所给的等量数据转化成反比函数图像上点的横纵坐标乘积(不用具体求出坐标点)得k值。

11规律:巧用k值,建立方程(方程组)解答。

12规律:类似反比例函数的问题,根据题目的特殊条件不用具体计算线段的长度,应用对比,转化思想解答。

13规律:给出反比例函数解析式,应用相似比与面积比之间的关系,面积与k之间的关系解答。

48 143264
");