高考数学知识点全解析样例(精彩10篇)

网友 分享 时间:

【请您参阅】下面供您参考的“高考数学知识点全解析样例(精彩10篇)”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

高考数学知识点全解析【第一篇】

(2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。

(3)线面垂直的判定定理2:如果在两条平行直线中有一条垂直于平面,那么另一条也垂直于这个平面。

(4)面面垂直的性质:如果两个平面互相垂直那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

(5)若一条直线垂直于两平行平面中的一个平面,则这条直线必垂直于另一个平面。

判定两个平面垂直的方法:(1)利用定义。

(2)判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。

夹在两个平行平面之间的平行线段相等。

经过平面外一点有且仅有一个平面与已知平面平行。

两条直线被三个平行平面所截,截得的对应线段成比例。

高考数学知识点全解析【第二篇】

我们知道,数学试卷中选择题和填空题占据了“半壁江山”,能否在这两类题型上获取高分,对高考数学成绩影响重大。

因此,在后期复习中,考生必须在选择题和填空题上加大训练力度,控制训练时间,避免“省时出错”“超时失分”现象的发生。

回归基础重梳理。

纵观往届考生,相当一部分同学丢分不是丢在难题上,而是基础题丢分太多,导致最后的考试分数不理想。

所以,在后期复习过程中,尽量回归基础,再现知识脉络和基本的数学方法。每天保证做一定量的基础题,让自己把这一部分基础题做对、做全,争取拿高分。

重点题型常“访谈”

后期复习时,要想在有限的时间内使复习获得最大的效益,必须能够做到“焦点访谈”,针对重点题型、重点知识进行重点复习。

建议:

数学要抓“关键点”,复习备考消盲点。后期复习绝不是简单重复的过程。要找好提分的最佳“支点”——组题的质量;抓住高考的“增分点”——基础题;把握好知识的“重点”——重点模块;突破知识的“难点”——解析几何及导数问题;使复习备考不留任何盲点。

高考数学知识点全解析【第三篇】

因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:

函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性(奇偶性、单调性、周期性、对称性)与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。

三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。

承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。

数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。

直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。

高考数学知识点全解析【第四篇】

(2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。

(3)线面垂直的判定定理2:如果在两条平行直线中有一条垂直于平面,那么另一条也垂直于这个平面。

(4)面面垂直的性质:如果两个平面互相垂直那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

(5)若一条直线垂直于两平行平面中的一个平面,则这条直线必垂直于另一个平面。

判定两个平面垂直的方法:(1)利用定义。

(2)判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。

夹在两个平行平面之间的平行线段相等。

经过平面外一点有且仅有一个平面与已知平面平行。

两条直线被三个平行平面所截,截得的对应线段成比例。

将本文的word文档下载到电脑,方便收藏和打印。

高考数学知识点全解析【第五篇】

错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

在求一般函数定义域时要注意下面几点:

(1)分母不为0;。

(2)偶次被开放式非负;。

(3)真数大于0;。

(4)0的0次幂没有意义。

函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。

易错点:带有绝对值的函数单调性判断错误。

错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:

二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。

对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

易错点:求函数奇偶性的常见错误。

错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。

在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。

高考数学知识点全解析【第六篇】

三忌“好高骛远,忽视双基”

很多同学都知道好高务远就是眼高手低、不自量力的代名词,但却不知道什么是好高骛远。

有的同学由于自己觉得成绩很好,所以,总认为基础的东西,太简单,研究双基是浪费时间;有的同学对自己的定位较高,认为自己研究的应该是那些高于其它同学的,别人觉得有困难的东西;有的同学总是嫌老师讲得太简单或者太慢,甚至有的同学成绩不怎么样,也瞧不起基础的东西。其实,这些都是好高骛远。

最深刻的道理,往往存在于最简单的事实之中。一切高楼大厦都是平地而起的,一切高深的理论,都是由基础理论总结出来的。同学们可以仔细地分析老师讲的课,无论是多难的题目,最后总是深入浅出,归结到课本上的知识点,无论是多简单的题目,总能指出其中所蕴藏的科学道理,而大多数同学,只听到老师讲的是题目,常常认为此题已懂,不需要再听,而忽略了老师阐述“来自基础,回归基础”的道理的关键地方。所以大家一定要重视双基,千万别好高务远。

四忌“敷衍了事,得过且过”

以下是对某校届高三300名同学关于作业问题的两项调查:(数值为人数比例:做到的/总人数)。

你做作业是为了什么?

检测自己究竟学会了没有占91/%。

因为老师要检查占143/%。

怕被家长、老师批评的占38/%。

说不清什么原因占28/%。

你的作业是怎样完成的?

复习,再联系课上内容独立完成占55/%。

高考数学知识点全解析【第七篇】

高考数学知识点:动点的轨迹方程动点的轨迹方程:

在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。

求动点的轨迹方程的基本方法:

直接法、定义法、相关点法、参数法、交轨法等。

用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。

动点所满足的条件不易表述或求出,但形成轨迹的动点p(x,y)却随另一动点q(x′,y′)的运动而有规律的运动,且动点q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y的式子,再代入q的轨迹方程,然而整理得p的轨迹方程,代入法也称相关点法。一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。

求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。要特别注意消参前后保持范围的等价性。多参问题中,根据方程的观点,引入n个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。

求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去参数,得到交点的两个坐标间的关系即可。交轨法实际上是参数法中的一种特殊情况。

(l)建系,设点建立适当的坐标系,设曲线上任意一点的坐标为m(x,y);

(2)写集合写出符合条件p的点m的集合p(m);

(3)列式用坐标表示p(m),列出方程f(x,y)=0;

(4)化简化方程f(x,y)=0为最简形式;

(5)证明证明以化简后的方程的解为坐标的点都是曲线上的点,

高考数学知识点全解析【第八篇】

例:已知,正四面体中,一枚棋子从一个顶点出发,选任何一条棱移动的概率都相等,每次移动前,掷一次骰子,出现偶数点,则棋子原地不动;若出现奇数点,则移动。 一枚棋子从点开始移动到点,求掷次骰子,才到达点的概率。

点拨:此题位置不确定,掷点奇偶不定,关系复杂,利用递推思想是最有郊的方法,通过构建递推数列,问题迎刃而解。一般存在相互依存关系问题的概率都可运用递推思路去解决。

综上所述,灵活运用递推思维,构造递推数列解决某些问题,可以起到化繁为简、化抽象为具体的奇效。 其运用过程中,融高度的逻辑性于一体,是数学中化归思想的深度体现,因此在平时高考复习中,应引起我们足够的重视。

二、数列递推思想在计数方面的应用

点拨:在一些复杂的计数问题中,运用数列递推思维组建递推关系可起到“疱丁解牛”的作用,使问题清晰而明了。需要说明的是,此题涉及到计数中的染色问题,通过递归关系得到一个一般化的'通式,此式在染色问题中应用相当广泛。

三、数列在归纳推理中应用

例:一白珠下面挂一黑珠,每一黑珠下挂一黑珠与一白珠,则第11行黑珠的个数为________。

[…第一行][…第二行][…第三行][…第四行][…第五行][…第六行]

点拨:此题通过运用递推思想得到一个递推关系,正是著名的“斐波拉契数列”。 在一些数列归纳通项的推理中,利用递推思想,构建递推公式,使有限拓展到无限,由特殊变成一般规律,这是解决此类问题常见思路与方法,同理这也体现了合理推理的精髓所在。

高考数学知识点全解析【第九篇】

数虽无形胜有形,数形结合就是行。

笛卡尔的观点对,点和有序实数对,

两者一一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;。

都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,

给了方程作曲线,曲线位置关系判。

参数方程极坐标,解决问题添新招,

坐标建立要适合,参数意义要用好。

四件工具是法宝,坐标思想参数好;。

平面几何不能丢,几何意义帮大忙。

解析几何是几何,得意忘形学不活。

图形直观数入微,数学本是数形学。

高考数学知识点全解析【第十篇】

集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数。

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量。

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.

考点四:数列与不等式。

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.

考点五:立体几何与空间向量。

一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

考点六:解析几何。

一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

考点七:算法复数推理与证明。

高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问.

1.先看笔记后做作业。

有的同学感到,老师讲过的,自己已经听得明明白白了。但是为什么你这么做有那么多困难呢?原因是学生对教师所说的理解没有达到教师要求的水平。

因此,每天做作业之前,我们必须先看一下课本的相关内容和当天的课堂笔记。能否如此坚持,常常是好学生与差学生的最大区别。尤其是当练习不匹配时,老师通常没有刚刚讲过的练习类型,因此它们不能被比较和消化。如果你不重视这个实施,在很长一段时间内,会造成很大的损失。

2.做题之后加强反思。

学生一定要明确,现在正做着的题,一定不是考试的题目。但使用现在做主题的解决问题的思路和方法。因此,我们应该反思我们所做的每一个问题,并总结我们自己的收获。

要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串。日复一日,建立科学的网络系统的内容和方法。俗话说:有钱难买回头看。做完作业,回头细看,价值极大。这一回顾,是学习过程中一个非常重要的环节。

1、科学的预习方法。

预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习后将课本的例题及老师要讲授的习题提前完成,还可以培养自己的自学能力,与老师的方法进行比较,可以发现更多的方法与技巧。总之,这样会使你的听课更加有的放矢,你会知道哪些该重点听,哪些该重点记。

2、科学的听课方式。

听课的过程不是一个被动参预的过程,要全身心地投入课堂学习,耳到、眼到、心到、口到、手到。还要想在老师前面,不断思考:面对这个问题我会怎么想?当老师讲解时,又要思考:老师为什么这样想?这里用了什么思想方法?这样做的目的是什么?这个题有没有更好的方法?问题多了,思路自然就开阔了。

3、科学的记录笔记。

记问题--将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。

记疑点--对老师在课堂上讲的内容有疑问应及时记下,这类疑点,有可能是自己理解错造成的,也有可能是老师讲课疏忽大意造成的,记下来后,便于课后与老师商榷。

记方法--勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。

记总结--注意记住老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找存在问题、找到规律,融会贯通课堂内容都很有作用。

48 1741782
");