数学建模论文【汇集10篇】
通过数学建模方法,分析复杂系统中的关键因素,揭示其内在规律,提供有效的决策支持,能否促进实际问题的解决?以下小编整理的数学建模论文相关内容,供大家借鉴参考,感谢支持。
数学建模优秀论文 篇1
探究式教学与数学建模
探究式教学法,不同于传统将知识直接由老师进行传授的教学方法,而将其重心放在学生的“探与究”上。“探”是重头,学生在新接触某个概念和原理时,教师只提供事例和问题,学生通过查阅、观察、记录、实验等途径独立探索。“究”是核心,学生在独立探索的基础上,通过思考、讨论自行发现掌握相应的原理和结论。
最后老师结合学生的探究过程对他们的结论进行评价和矫正。在探究过程中,始终强调以学生为主体,学生的自主学习能力都得到加强,相比被动接受教师传授的知识和结论,通过这种方式获取的知识,学生理解更透彻,掌握更牢固。数学建模课程教学中大量源于实际生活的实例,也使得这门课程在教学手段和教学形式上的得以有大量创新,探究式的教学模式尤其适合在本课程的教学中使用,笔者长期承担数学建模课程的教学工作和指导学生开展数学建模竞赛及有关活动,结合多年的实践谈一谈。
探究过程的`具体实施
问题驱动
探究过程的驱动是问题,学生的学习活动围绕教师设计的问题展开。教师在这里要做的是,课前根据教学目的和内容,精心挑选有趣,又难度适宜的问题。例如,在一堂数学建模课中,我们以身边的一个具体实例来提出问题:通常1公斤的面,1公斤的馅,包100个汤圆;今天1公斤面不变,馅比1公斤多了,问应多包几个,每个包小一点,还是应少包几个,每个包大一点?
实践探索
这是探究过程的关键环节,在教师的组织下,学生自己动手实践如何制订研究计划,如何收集必要的资料和有关的研究方法。基于培养学生团队合作精神的目的,这个过程可将学生分组来完成。例如:包汤圆的问题中,引导学生把问题梳理和抽象出来,一张面积为S的皮,可以包体积为V的馅,如今把这张面积为S的皮,分成n张面积为s的皮,每张面积为s的皮可以包体积为v的馅,那么问题就转化为了讨论,究竟是V大还是nv大的问题了。这个过程中,一定要让学生思考,是不是需要某些合理的假设,如:不论面皮大小,其厚度都应该一致;不论汤圆大小,其形状都一致(这两个假设很关键)。
思考讨论
学生把通过实践探索得到的资料进行思考、梳理、总结,形成自己的结论。各团队就同一问题将自己的结论清楚地表达出来,针对各种不同的观点,共同讨论。评价矫正 在集体讨论、辩论过程中,教师适时给予评价和矫正,分析独特,立意清晰的给予肯定,观点模糊的给予指正,通过融洽的学术交流使大家发现自己的问题所在,不准确、不深入的地方继续完善。
探究式教学中应注意的问题
精心设计
第一、选择适合探究的教学内容。课堂中的探究其根本目的是引导学生主动获取知识,教师要注意不要仅仅为了体现探究的形式而忽略了探究的目的。
第二、教师精心组织、编排探究的问题。大学数学课程探究式教学关键是通过问题的驱动,让学生在探究过程中自主的把握问题解决的方向,所有同学都在考虑同一个问题,在讨论探究中产生思维的火花。要达到预期效果,没有教师课前精心组织、设计是很难做到的。
第三、控制好各个环节。根据实际情况,设计好探究过程中各环节的时间。将学生探究讨论的时间和教师点评的时间都事先做一个安排,形成一定的惯例,学生课前充分准备,通过细致的安排,确保探究过程高效完成。
注重引导
学生由于认知水平参差不齐导致探究过程有显著差异,教师要充分发挥引领作用,及时给予引导和矫正。
及时总结和评价
教师在学生讨论完成后,及时对探究过程进行总结,讲解正确的分析和理解,让同学对自己的思考形成判断和比较,通过鼓励,调动学生积极性,唤起学习热情。
数学建模优秀论文 篇2
有意义地利用“压岁钱”;在正月里,长辈们每年都会给我们压岁钱,而大多数同;假如平均每年按照200元压岁钱存入银行,初中三年;初一学生存三年的利息:;(200×%×3)×(60×16)=14;初二学生存二年的利息:;(200×%×2)×(60×16)=92;初三学生存一年的利息:;(200×%×1)×(60×16)=4
有意义地利用“压岁钱”
在正月里,长辈们每年都会给我们压岁钱,而大多数同学都把压岁钱当做了零花钱,没有意义。为了能帮助失学儿童,学校办一个“压岁钱小银行”,要求同学们有多少钱存多少钱,存入学校里“压岁钱小银行”,学校统一将同学们的压岁钱存入银行。毕业时本金还给同学们,利息捐给经济有困难的同学。
假如平均每年按照200元压岁钱存入银行,初中三年每个学生总共存入600元计算,若初一、初二、初三各16个班,每班按60人计算,初三的存一年,初二的存两年,初一的存三年,年利率分别按%、%、%计算,则:
初一学生存三年的.利息:
(200×%×3)×(60×16)=14976(元);
初二学生存二年的利息:
(200×%×2)×(60×16)=9216(元);
初三学生存一年的利息:
(200×%×1)×(60×16)=4320(元);
一年全校利息合计:
14976+9216+4320=28512(元)。
假设学校每年招生班级以及人数都不变,则学校每年都有28512元利息,日照市有那么多所中学,假如每所中学都建立“压岁钱小银行”,假如小学也建立“压岁钱小银行”,那么,每个学生六年下来,每年全校利息将比中学利息要高上好几倍。所以成立“压岁钱小银行”很有意义与必要。为了灾区儿童有良好的读书环境,为了国家更繁荣,昌盛,同学们行动起来吧,拿出你们的压岁钱,奉献我们的一片爱心。
数学建模优秀论文 篇3
摘要:为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自进入21世纪的知识经济时代以来,数学科学的地位发生了巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理论与方法的不断扩充使得数学已成为当代高科技的一个重要组成部分,数学已成为一种能够普遍实施的技术。培养学生应用数学的意识和能力也成为数学教学的一个重要方面。
目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学建模通过"从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际"这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。
数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性";"数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的.能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。
那么当前我国高中学生的数学建模意识和建模能力如何呢?下面是节自有关人士对某次竞赛中的一道建模题目学生的作答情况所作的抽样调查。题目内容如下:
某市教育局组织了一项竞赛,聘请了来自不同学校的数名教师做评委组成评判组。本次竞赛制定四条评分规则,内容如下:
(1)评委对本校选手不打分。
(2)每位评委对每位参赛选手(除本校选手外)都必须打分,且所打分数不相同。
(3)评委打分方法为:倒数第一名记1分,倒数第二名记2分,依次类推。
(4)比赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。
本次比赛中,选手甲所在学校有一名评委,这位评委将不参加对选手甲的评分,其他选手所在学校无人担任评委。
(Ⅰ)公布评分规则后,其他选手觉得这种评分规则对甲更有利,请问这种看法是否有道理?(请说明理由)
(Ⅱ)能否给这次比赛制定更公平的评分规则?若能,请你给出一个更公平的评分规则,并说明理由。
本题是一道开放性很强的好题,给学生留有很大的发挥空间,不少学生都有精彩的表现,例如关于评分规则的修正,就有下列几种方案:
方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数第二名记2+,…依次类推;(评分标准)
方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;
方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;
然而也有不少学生为空白,究其原因可能除了时间因素,学生对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。同时,一些学生由于不能正确理解规则(3),得出选手甲的平均得分为,其他选手的平均得分为xx,从而得出错误结论.不少学生出现“甲所在学校的评委会故意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。有些学生在正确理解题意的基础上,提出了“规则对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。以上各种想法都有道理,遗憾的是大部分学生仅仅停留在这些感性认识和文字说明上,没能进一步引进数学模型和数学符号去进行理性的分析。如何衡量规则的公平性是本题的关键,也是建模的原则。很少有学生能够明确提出这个原则,有些学生在第2问评分规则的修正中,提出“将甲所在学校的评委从评判组中剔除掉”,这种办法违背实际的要求。有些学生被生活中一些现象误导,提出“去掉最高分和最低分”的评分规则修正方法,而不去从数学的角度分析和研究。
通过对这道高中数学知识应用竞赛题解答情况的分析,我们了解到学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。(2)数学建模方法需要提高。(3)数学应用意识不尽人意数学建模意识很有待加强。新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!
那么高中的数学建模教学应如何进行呢?数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。
(一)在教学中传授学生初步的数学建模知识。
中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。
例如在学习了二次函数的最值问题后,通过下面的应用题让学生懂得如何用数学建模的方法来解决实际问题。例:客房的定价问题。一个星级旅馆有150个客房,经过一段时间的经营实践,旅馆经理得到了一些数据:每间客房定价为160元时,住房率为55%,每间客房定价为140元时,住房率为65%,
每间客房定价为120元时,住房率为75%,每间客房定价为100元时,住房率为85%。欲使旅馆每天收入最高,每间客房应如何定价?
[简化假设]
(1)每间客房最高定价为160元;
(2)设随着房价的下降,住房率呈线性增长;
(3)设旅馆每间客房定价相等。
[建立模型]
设y表示旅馆一天的总收入,与160元相比每间客房降低的房价为x元。由假设(2)可得,每降价1元,住房率就增加。因此由可知于是问题转化为:当时,y的最大值是多少?
[求解模型]
利用二次函数求最值可得到当x=25即住房定价为135元时,y取最大值(元),
[讨论与验证]
(1)容易验证此收入在各种已知定价对应的收入中是最大的。如果为了便于管理,定价为140元也是可以的,因为此时它与最高收入只差元。
(2)如果定价为180元,住房率应为45%,相应的收入只有12150元,因此假设(1)是合理的。
(二)培养学生的数学应用意识,增强数学建模意识。
首先,学生的应用意识体现在以下两个方面:一是面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,学习者在学习的过程中能够认识到数学是有用的。二是认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用:生活中处处有数学,数学就在他的身边。其次,关于如何培养学生的应用意识:在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。通过教师的潜移默化,经常渗透数学建模意识,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。
(三)在教学中注意联系相关学科加以运用
在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数分裂过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的计算等等。这些需要教师在平时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。
最后,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能准确地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。
数学建模优秀论文 篇4
【摘 要】首先阐述数学建模内涵;其次分析数学建模与数学教学的关系;最后总结出提高数学教学效果的几点思考。
【关键词】数学建模;数学教学;教学模式
什么是数学建模,为什么要把数学建模的思想运用到数学课堂教学中去?经过反复阅读有关数学建模与数学教学的文章,仔细研修数十个高校的数学建模精品课程,数学建模优秀教学案例等,笔者对数学教学与数学建模进行初步探索,形成一定认识。
一、数学建模
数学建模即运用数学知识与数学思想,通过对实际问题数学化,建立数学模型,并运用计算机计算出结果,对实际问题给出合理解决方案、建议等。系统的谈数学建模需从以下三个方面谈起。
1.数学建模课程。
“数学建模”课程特色鲜明,以综合门类为基础,重实践,重应用。旨在使学生打好数学基础,增强应用数学意识,提高实践能力,建立数学模型解决实际问题。注重培养学生参与现代科研活动主动性与参与工程技术开发兴趣,注重培养学生创新思维及创新能力等相关素质。
2.数学建模竞赛。
1985年,美国工业与应用数学学会发起的一项大学生竞赛活动名为“数学建模竞赛”。旨在提高学生学习数学主动性,提高学生运用计算机技术与数学知识和数学思想解决实际问题综合能力。学生参与这项活动可以拓宽知识面,培养自己团队意识与创新精神。同时这项活动推动了数学教师与数学教学专家对数学体系、教学方式与教学知识重新认识。1992年,教育部高教司和中国工业与数学学会创办了“全国大学生数学建模竞赛”。截止20xx年10月已举办有21届。大力推进了我国高校数学教学改革进程。
3.数学建模与创新教育。
创新教育是现代教育思想的灵魂。数学建模竞赛是实现数学教育创新的重要载体。如20xx年A题,葡萄酒的评价中,要求学生对葡萄酒原料与酿造、储存于葡萄酒色泽、口味等有全面认识;而20xx年D题,机器人行走避障问题,要求学生了解对机器人行走特点;20xx年B题,乘公交看奥运,要求学生了解公交换乘系统。大学生数学建模竞赛试题涉及不是单一数学知识。因此数学教师在数学教学中必须融合其它学科知识。同时学生参与数学建模竞赛有助于增强其积极思考应用数学知识创造性解决实际问题的意识。
二、数学建模与数学教学的关系
数学建模是数学应用与实践的重要载体;数学教学旨在传授数学知识与数学思想,激发学生应用数学解决实际问题的意识。数学建模与数学教学相辅相成,数学建模思想与数学教学将有助于提高教学效果,反之传统应试扼杀了学生学习数学的`兴趣与主观能动性;数学教学效果,在数学建模过程中体现显著。
三、数学教学
1.数学教学“教”什么。电子科技大学的黄廷祝老师说:“数学教学,最重要的就是数学的精神、思想和方法,而数学知识是第二位的。”因此数学教师不仅要传授数学知识,更要让学生知道数学的来龙去脉,领会数学精神实质。
2.如何提高数学教学效果。提高数学教师自身素质是关键,创新数学教学模式是手段,革新评价机制是保障。
①提高数学教师自身素质。
数学教师自身素质是提高数学教学效果的关键。20xx年胡书记在《国务院关于加强教师队伍建设的意见》中明确提出,我国教育出了问题,问题关键在教师队伍。数学学科特点鲜明。若数学教师数学素养与综合能力不强,则提高数学教学效果将无从谈起。因此数学教师需通过如参加培训、学习精品课程、同行评教、与专家探讨等途径努力提高自身素养。
②创新数学教学模式 。
(1)必须转变教学理念。首先要转变继承性教育理念,注重培养学生综合素质与实际操作能力。其次要转变注入式教育理念,注重发挥学生主体能动性。再次要转变应试教育理念。注重素质的培养是长久发展之计。最后要转变传统教学模式。科技发展为教育教学实现提供多种选择。教育工作者应提供多种教学模式以提高学习效果。
(2)必须改革数学教学模式。传统讲授式教学模式有很多不足,学生参与不够,不能发挥学生的主体能动性。因此,在今后数学教学中,要注重发挥学生的主体能动性,如增加课题互动环节,采用小组讨论,教师引导等方式。
在数学教学过程中,要巧用提问。教师可针对某一具体教学内容根据数学思维方式特点巧设提问,让学生回答,教师在关键的地方进行启发点拨,并适当的总结。在问答过程中,培养学生分析和思考问题、解决问题能力;在数学教学过程中,可采用分组讨论形式。采用小组讨论与集体展示、互评相结合。旨在教育学生学会倾听,分析不同;学会表达,勇于提出见解,培养学生团队意识。
在数学课堂上可通过对典型案例的剖析,使学生亲历发现问题、认识问题和解决问题的过程。培养学生实际动手操作能力。
(3)建立多元化评价机制。一是要建立多元化教师教学评价机制。采用多元化考核、综合评定教师教学效果的方法,有利于教师发展。二是要建立多元化学生学习效果评价机制。多元化评价机制对学生评价更客观、公正,有利于发挥学生主观能动性。
数学建模优秀论文 篇5
文章以数学建模课程为载体,以培养学生创新能力为核心,从完善课程教学体系入手,将数学建模培养创新能力贯穿在教学的全过程,探索课程教学模式对培养创新人才的新措施。
课程是高校教育教学活动的载体,是学生掌握理论基础知识和提高综合运用知识能力的重要渠道,学生创新能力的形成必定要落实在课程教学活动的全过程中。“数学建模”是一门理论与实践紧密结合的数学基础课程,课程的许多案例来源于实际生活,其学习过程让学生体验了数学与实际问题的紧密联系。数学建模课程从教学理念及教学方法上有别于传统的数学课程,它是将培养学生的创新实践能力作为主要任务,利用课程体系完成创新能力的培养。由于课程教学内容系统性差,建模方法涉及多个数学分支,课程结束后还存在着学生面对实际问题无从下手解决的现象。通过深入研究课程教学体系,将传授知识和实践指导有机结合,实施以数学建模课程教学为核心,以竞赛和创新实验为平台的新课程教学模式。
一、数学建模课程对培养创新人才的作用
(一)提高实践能力
数学建模课程案例主要来源于多领域中的实际问题,它不仅仅是单一的数学问题,具有数学与多学科交叉、融合等特点。课程要求学生掌握一般数学基础知识,同时要进一步学习如微分方程、概率统计、优化理论等数学知识。这就需要学生有自主学习“新知识”的能力,还要具备运用综合知识解决实际问题的能力。因此,数学建模课程对于大学生自学能力和综合运用知识能力的培养具有重要作用。
(二)提高创新能力
数学建模方法是解决现实问题的一种量化手段。数学建模和传统数学课程相比,是一种创新性活动。面对实际问题,根据数据和现象分析,用数学语言描述建模问题,再进行科学计算处理,最后反馈到现实中解释,这一过程没有固定的标准模式,可以采用不同方法和思路解决同样的问题,能锻炼学生的想象力、洞察力和创新能力。
(三)提高科学素质
面对复杂的实际问题,学生不仅要学会发现问题,还要将问题转化为数学模型,利用数学方法和计算软件提出方案用于解释实际问题。由于数学建模知识的宽泛性,需要学生分工合作完成建模过程,各成员的知识结构侧重点有所不同,彼此沟通、讨论有助于大学生相互交流与协作能力的培养,最终的成果以浅谈高校校园文化与就业文化建设有效融合的探校园文化对大学生心理成长的影响及对策研究浅论学习型党组织建设与校园文化建设关系构建农村特色校园文化,全面推进素质教育浅谈地方合并高校校园文化体系构建研究论高校校园文化建设过程中的客观必然性浅析网络信息服务与和谐校园文化建设浅谈高校图书馆与校园文化之构建大学生心理的校园文化特性和谐大学校园文化建设的形式体现,从行政科学到公共行政——学科史视角下的西方浅谈从科学发展模式看计算机科学的发展道路从环境保护的视角看科学技术与伦理道德协调文化发展内外关系关乎科学发展大势小学科学课教学中几个需要注意的问题浅谈探究性实验在小学科学课中的运用党的三代领导思想与科学发展观浅议把握考试方向科学有序训练科学教学中培养学生问题意识浅谈小学科学教学生活化撰写过程提高了学生科学研究的系统性。
二、基于数学建模课程教学全方位推进创新能力培养的实践
(一)分解教学内容增强课程的适应性
根据学生的接受能力及数学建模的发展趋势,在保持课程理论体系完整性和知识方法系统性的基础上,教学内容分解为课堂讲授与课后实践两部分。课堂教师讲授数学建模的基础理论和基本方法,精讲经典数学模型及建模应用案例,启发学生数学建模思维,激发学生数学建模兴趣;课后学生自己动手完成课堂内容扩展、模型运算及模型改进等,教师答疑解惑。课堂教学注重数学建模知识的学习,课后教学重在知识的运用。随着实际问题的复杂化和多元化,基本的数学建模方法及计算能力满足不了实际需求。课程教学中还增加了图论、模糊数学等方法,计算机软件等初级知识。
(二)融入新的教学方法提高学生的参与度
1.课堂教学融入引导式和参与式教学方法。数学建模涉及的知识很多是学生学过的,对学生熟悉的方法,教师以引导学生回顾知识、增强应用意识为主,借助应用案例重点讲授问题解决过程中数学方法的应用,引导学生学习数学建模过程;对于学生不熟悉的方法,则要先系统讲授方法,再分析講解方法在案例中的应用,引导学生根据问题寻找方法。此外,为了增强学生学习的积极性和效果,组织1~2次专题研讨,要求学生参与教学过程,教师须做精心准备,选择合适教学内容、设计建模过程、引导学生讨论、纠正错误观点。
2.课后实践实施讨论式和合作式教学方法。在课后实践教学中,提倡学生组成学习小组,教师参与小组讨论共同解决建模问题。学生以主动者的角色积极参与讨论、独立完成建模工作,并进行小组建模报告,教师给予点评和纠正。对那些没有彻底解决的问题,鼓励学生继续讨论完善。通过学生讨论、教师点评、学生完善这一过程,极大地调动了学生参与讨论、团队合作的热情。同时,教师鼓励学生自己寻找感兴趣的问题,用数学建模去解决问题。
3.课程综合实践推进研究式教学方法。指导学生在参加数学建模竞赛、学习专业知识、做毕业设计及参与教师科研等工作中,学习深入研究建模解决实际问题的方法,通过多层次建模综合实践能提高分析问题、选择方法、实施建模、问题求解、编程实践、计算模拟的综合能力,进而提高创新能力。
(三)融合多种教学手段,提高课程的实效性
1.利用网站教育平台实施线上课堂教学。线上教学要选取难易适中,不宜太专业化,便于自学,并具有与课堂教学承上启下功能,服务和巩固课程的需要的内容,利用互联网云教育平台,学习多媒体课件、教学视频,及通过提供的相关资料来学习。教师还可通过网站发布问题、解答疑难、组织讨论,学生通过网站学习知识、提交解答、参与讨论。学生能更有效地利用零散时间,培养自我约束、管理时间的意识和能力。
2.充分利用多媒体课件与黑板书写相结合的课堂教学手段。根据课堂教学要求,规划设计制作课件与黑板书写的具体内容,同时连接好线上的学习成效推进课堂教学。课件主要介绍问题背景、分析假设、建模方法、算法程序和模型结果,而模型推导和分析求解的具体过程,则通过板书展示增加了课堂教学的信息量,也促进学生消化理解难点和技巧。
3.指导学生小组学习的课后教学手段。指导学生以学习小组为单位开展建模学习与实践活动,提倡不同专业学生之间的相互学习、取长补短,通过学习与讨论增强学生自主学习的.意识和能力。数学建模过程不是解应用题,虽然没有唯一途径,但也有规律可循,在小组学习中发挥团队力量、提高建模能力。
(四)构建多层次建模问题,培养学生创新能力
案例选择、教学设计、知识衔接是数学建模在创新型人才培养中的关键。
1.课堂教学建模问题。课堂教学通过应用案例讲解有关建模方法,所选问题包括两类:一是基本类型,围绕大学数学课程主要知识点的简单建模问题,如物理、日常生活等传统领域中的建模问题,学生既能学习建模方法又能感受数学知识的应用价值;二是综合类型,涵盖几个数学知识点的综合建模问题,如SAS的传播。问题要有一定思考的空间,且在教师的分析和引导下学生能够展开讨论。
2.课后实践建模问题。课后学生要以学习小组为单位完成教师布置的数学建模问题。问题要围绕课堂教学内容,难易适当,层次可分,以便学生选择和讨论。同时,问题还要有明确的实际背景,能将数据处理、数值计算有机结合起来。另一方面,鼓励学生学会发现日常生活和专业学习中的建模问题,引导学生提出正确的思考方向,帮助学生给出解决问题的方案。
(五)组织多元化过程考核,注重学习阶段效果
1.课堂内外考试与网上在线考试相结合的过程考核。教师按照教学要求将考试可以分解两种形式:课堂内结合应用案例组织课堂讨论,通过学生参与情况实施考核;课堂外针对基础知识可实施在线测试,对综合知识点设计一定量的大作业,根据学生完成情况实施考核,也允许学生自主选题完成大作业。
2.课程教学结束的综合考核。课程综合考核重点在于测试学生知识综合运用能力,可以采取两种形式之一。一是集中考试法,试题包括有标准答案的基础知识、课堂讲授的建模案例、完全开放的实际问题;考试采取“半开卷”形式,即可以携带一本教材,但不能与他人讨论。二是建模竞赛实践的考核法。数学建模选修课期间刚好组织东北三省数学建模联赛和校内数学建模竞赛,鼓励学生参加竞赛,依据竞赛论文实施考核。
在考核成绩评定上,采用综合计分方式,弱化期末考核权重,加大过程考核分量,注重过程学习,提高考核客观性。
(六)教学团队建设
数学建模课程不同于传统的数学基础课程,在教学过程中数学方法与实际问题并存,理论学习与实践动手并举,课堂学习与课后实践并行。教学团队成员从知识结构上要尽量涵盖多学科,还要与专业联合,融数学知识到实践中去。在教学方面,以课程为核心,以数学建模竞赛指导为引领,研究数学建模课堂教学改革和课外教学实践的方式方法,探索通过数学建模课程培养大学生创新能力的实施过程。
数学建模优秀论文 篇6
一、层次分析法的基本原理
层次分析法是解决定性事件定量化或定性与定量相结合问题的有力决策分析方法。它主要是将人们的思维过程层次化、,逐层比较其间的相关因素并逐层检验比较结果是否合理,从而为分析决策提供较具说服力的定量依据。层次分析法不仅可用于确定评价指标体系的权重,而且还可用于直接评价决策问题,对研究对象排序,实施评价排序的评价内容。
用AHP分析问题大体要经过以下七个步骤:
⑴建立层次结构模型;
首先要将所包含的因素分组,每一组作为一个层次,按照最高层、若干有关的中间层和最低层的形式排列起来。对于决策问题,通常可以将其划分成层次结构模型,如图1所示。
其中,最高层:表示解决问题的目的,即应用AHP所要达到的目标。
中间层:它表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等。
最低层:表示解决问题的措施或政策(即方案)。
⑵构造判断矩阵;
设有某层有n个元素,X={Xx1,x2,x3……xn}要比较它们对上一层某一准则(或目标)的影响程度,确定在该层中相对于某一准则所占的比重。(即把n个因素对上层某一目标的影响程度排序。上述比较是两两因素之间进行的比较,比较时取1~9尺度。
用表示第i个因素相对于第j个因素的比较结果,则
A则称为成对比较矩阵
比较尺度:(1~9尺度的含义)
如果数值为2,4,6,8表示第i个因素相对于第j个因素的影响介于上述两个相邻等级之间。
倒数:若j因素和i因素比较,得到的判断值为
⑶用和积法或方根法等求得特征向量W(向量W的分量Wi即为层次单排序)并计算最大特征根λmax;
⑷计算一致性指标CI、RI、CR并判断是否具有满意的一致性。其中RI是
其中
平均随机一致性指标RI的数值:
矩阵阶数3 4 5 6 7 8 9 10 11
RI
CR=CI/RI,一般地当一致性比率CR
⑸层次总排序,如表1所示。
⑹层次总排序一致性检验,如前所述。
⑺根据需要进行调整对于层次单排序结果和层次总排序结果,只要符合满意一致性即随机一致性比例CR≤ 就可以结束计算并认同排序结果,否则就要返回调整不符合一致性的判断矩阵。
二、层次分析法Excel模型设计过程案例:某人欲到苏州、杭州、桂林三地旅游,选择要考虑的因素包括四个方面:景色、费用、居住和饮食,用层次分析法选一个适合自己情况的旅游点。
⒈根据题意可以建立层次结构模型如图1所示。
⒉Excel实现过程⑴将准则层的各因素对目标层的影响两两比较结果输入Excel表格中,进行单排序及一致性检验如图2所示。其中:F4=PRODUCT(B4:E4),表示B4、C4、D4、E4各单元格连乘,复制公式至F7单元格。 G4=POWER(F4,1/4),表示将F4单元格的值开4次方,复制公式至G7单元格G8=SUM(G4:G7),表示求和H4=G4/$G$8,复制公式至H7单元格I4= B4xH$4+C4xH$5+D4xH$6+E4xH$7,复制公式至I7单元格J4= I4/H4 λmax= AVERAGE(J4:J7)。 CI=(J8-4)/(4-1),CR=CI/=
⑵按同样的方法分别计算出方案层对景色、费用、居住、饮食的判断矩阵及一致性检验,如图3所示。 ⑶层次总排序,由于苏州数值最高,故选择的.旅游地为苏州,如图4所示。其中:C44=K14,G44=$C$43xC44,H48={SUM($C$43:$F$43xC48:F48)},注意:这是一个数组函数需按ctrl+shift+enter三键确定。
三、基于Excel的层次分析法模型设计的优势
⑴层次分析法Excel算法以广泛使用的办公软件Excel作为运算平台,无需掌握深奥的计算机专业知识和术语,有很好的推广应用基础。
⑵层次分析法Excel算法的所有计算结果和数据均保留最高位数的精确度,可以不在任何环节进行四舍五入,当然也可以根据需要设置小数位,从而最大限度地减少了误差。
⑶层次分析法Excel算法的计算步骤设计成环环相扣、步步跟踪,步骤设计完毕后,可以按需要填充或变更,其余数据和结果均可以在填充或变更判断矩阵之后立即得出,使得整个运算过程简捷、轻松。另外,相似的矩阵区和计算区可以通过复制完成,只需改动少量单元格。
⑷层次分析法Excel算法将一致性检验也同时计算出来,决策者和判断者可以即时知道自己的判断是否具有满意的一致性并可以随时和简单地进行调整直到符合满意一致性。
⑸如果一致性指标不能令人满意,用本方法可以比较容易地实现对判断矩阵的调整,可以实现对判断的“微调”,使得逼近最大程度的“满意一致性”甚至“完全一致性”而又不必进行繁重运算成为可能。
数学建模优秀论文 篇7
一、数学建模论文帮写的相关要求
1、问题重述
根据你对文章的理解度来达到解决问题的目的,这个时候就是考验你文字功底的时候了。
2、问题分析
对论文中涉及的每个问题进行详细的理解分析,并给出解决方案以及所用到的模型。
3、模型假设
通过合理化的假设使复杂的问题简单化,比如针对想解决的问题作出虚假的设想,但是一定要注意要验证假设的合理性。
4、符号说明
对建模及编程所用到的符号要具体说明。如点状符号、线状符号、面妆符号等,他们各自代表的意义是什么,大家一定要解释清楚。
5、模型建立及求解
建立模型的时候要明确,思路要做到清晰准确,让人看了后容易理解你表达的意思,求解过程还是要写出来,便于读者对整个模型的设计有深入的认识。
6、模型检验
模型得出来的结果回到实际问题中去验证其是否合理性。主要包含灵敏度分析和误差分析等。
7、模型评价与推广
模型建立好后要针对模型的优缺点、改进方法以及实际的用途做详细的阐述。
8、参考文献
主要看下参考文献的格式是否符合建模论文的要求,具体体现在图片上。
9、附录
最后的附录中应包含程序以及相关的图表、数据等等,有了这些更具有科学性与权威性。
二、数学建模论文帮写价格
数学建模论文的价格一般在8000-10000元左右。数学建模论文包含:问题分析、假设、建立、求解、结果分析和检验等,价格会偏高一点对写手的写作水平要求也高,需要查阅收集众多资料,没有合适的.资料还要做建模实验,通过实验才能提取准确的数据,能够帮写的写手不多,因此价格偏高也是可以理解的。
以上价格只是市场一般的帮写行情,具体准确的价格还是要和客服沟通,事先要说清楚你论文的具体要求,他们才好根据实际要求写作,写作的论文才是最符合你的需求的
三、数学建模论文帮写的流程
1、将自己的论文要求与客服人员交流,一定要交代清楚你想帮写的具体要求,如字数、建模特殊要求、专业方向、论文题材等,只有告知清楚你的实际要求,他们才好定价,才好确定能否帮写,不符合条件的或者不在他们帮写范围的不会接单,也是对客户负责任的体现。
2、沟通后价格你能接受的前提下,可以先支付一半的定金作为保证金,他们收到钱后立马拟定题目,提醒大家不要全款支付,帮写都是网上进行的交易,一定要小心行事。
3、写作完成一半后会给你审核,你觉得无异议的情况下可以再支付部分费用,他们继续写作,全文完成后且导师审核合格的前提下你可以结清尾款,交易结束。
4、在检查的过程中发现有需要修改的地方,一定要及时告知他们,他们会做出相应的修改,直至你论文通过为止。
数学建模优秀论文 篇8
一、数学建模教学现状分析
在数学建模教学中,“讲授法”还是主流教学法,虽也有启发,借助多媒体辅助教学,但由于互动不足,学生自主参与较少,主动性和积极性没能有效调动起来,导致教学效果不够理想,学生没懂多少,没有理解掌握数学建模的思想和方法。
二、数学建模教学的改革举措
1、加强宣传。为了让更多的学生了解数学建模,可通过纸质媒体、电子媒体进行宣传,还可通过组建学生数学建模协会开展活动广而告之,还可通过在高等数学的教学中融入数学建模的案例,让学生初步了解数学建模及其特点,产生学习数学建模的兴趣。
2、分类开课。为了让更多学生受益,虽有竞赛任务,数学建模选修课还是不应限定选课学生范围,比如只限定一年级学生或者有意参赛的学生,而应面向全体学生开设,又考虑到选课的学生不全是以参加竞赛为目的,不全是对数学建模感兴趣,甚至有些是因为没得选而又必须完成选修课学分的要求,可将选修课班级分“普及班”和“竞赛班”两类供学生选择,既满足学生选课的需求又兼顾竞赛的需要,对不同班级提出不同的教学要求。
3、优化教学内容。在选择教学内容时,应注意如下几点:一是模型类型不宜太多,不要搞得太复杂,比如只讲初等模型、简单的优化模型;二是模型数量不宜太多,以4-6个为宜;三是难度不宜太大,还应循序渐进,内容最好为学生了解、喜闻乐见,所选模型应有利于培养学生求异思维、创新思维;四是加入数学软件的教学,让学生“玩起来”,初步学会数学软件的使用,体会数学建模与普通数学的不同之处,体验到数学的用武之地。
4、改进教学方法。传统的讲授式教学法,学生一般处于被动状态,不利于发挥学生的主观能动性,而要学好数学建模需要学生主动积极参与,更多参与到教学过程当中来,因此应该采用任务驱动教学法、互动式教学法、研讨式教学法等。
三、收获与体会
从20xx年开始,我们在数学建模选修课教学中进行了实践,取得了良好效果,有如下收获和体会:
1、数学建模课堂教学面貌换然一新。任务驱动、互动式、研讨式等教学法的综合运用,改变了以往“教师讲,学生听”,学生被动的`教学模式,转变为学生主动参与、自主协作、积极探索的新型学习模式,践行了“教师为主导、学生为主体”教育精神;通过教师引导学生进行研究学习,让学生亲历知识产生与形成的过程,学会独立运用其所学的数学知识解决实际问题,从而实现知识发现与重构,激发学生的学习潜能和学习兴趣,培养了学生的学习能力和应用能力,使课堂充满活力。
2、树立了学生学好数学建模的自信心。由于教法得当,优化了教学内容,加入了数学软件的学习,使学生成为了学习的主人,不再是知识的被动接受者,而是通过亲身实践、主动探索去学习发现知识,从中体验到了成功的喜悦,克服困难的乐趣;降低了学习的难度,渐进的内容安排,使学生不再觉得数学建模难以学习;而且内容贴近生活实际,使学生不再认为数学无用武之地,变要我学为我要学。
3、教师要善于组织、指导、监控。教师组织安排教学内容时,必须要对教学内容要有透彻的理解,教学设计要有较强针对性,切实可行,要使学生通过完成任务,实现教学目标、达到教学目的;在学生自主协作学习过程中,教师要注意监控学生的学习进程,了解学生学习过程中碰到有哪些困难,给予学生适当的指导或组织学生攻坚克难。
数学建模优秀论文 篇9
摘要:随着新课改的实施,寻求高校数学教学的新方式引起了相关部门和工作人员的重视。同时,数学具有较强的逻辑性,能够有效培养和提高学生的逻辑思维能力,而数学建模更加能够体现数学的逻辑性,因此,在高校的数学教学中采用数学建模这一教学方法具有极强的现实意义。在此,本文就数学建模教育与高校数学教学方式改革模式进行论述。
关键词:数学建模;高校数学;教学方式;改革
所谓数学建模就是将实际生活中的事物通过数学的模式表现出来,也可以说是利用数学来解决生活中的实际问题。由此可见,数学建模是将数学与实际生活相联系的桥梁。
一、将数学建模应用于高校数学教学的意义
1.有利于学生更好地掌握基础理论知识。数学建模能够将实际生活中的问题以数学的形式表达出来,然后利用数学知识和思维来解决问题,这对于学生的基础理论知识的掌握有一定的要求。同时,也有助于学生充分利用自己的数学知识来解决问题。数学与生活实际的结合,还减少了学习数学的枯燥感,从而使得学生提高学习数学的兴趣,进而更加全面地理解和掌握基础理论知识。2.有利于培养和提高学生的创新能力和创新思维。当前社会需要大量创新型人才,教育目标也有意向创新型人才的培养靠拢。在传统的教学方法下,很难让学生学会灵活运用知识。通过数学建模来进行教学能够弥补传统教学方式的不足,因为它能加强教师与学生之间的交流,提高学生在课堂上的参与度,从而帮助学生灵活运用课堂知识。通过理论与实际的结合,培养学生的思维能力和创新能力。3.有利于学生学习其他学科。通过数学的学习,学生能够提高自己的逻辑思维能力和实践能力,也能有效解决其他学科中的问题。
二、当前在高校数学教学中应用数学建模存在的问题
1.落实数学建模存在一定的难度。由于在数学教学中应用数学建模还处于探索阶段,很多学校的教学方案还有待完善,缺乏科学具体的落实措施。
2.教师的教学能力有待提升。随着时代的进步,当前高校教师的质量已有了很大的提升,但是仍受传统教学理念的`影响,没能很好地掌握数学建模这一教学方式,不能发挥出数学建模的作用。
3.数学与其他学科的交叉不足。当前,我国高校还是以专业教育为主,数学专业的学生和教师的交流仅局限于数学领域,难以与实际进行结合,也很难与其他学科进行融合,因此学生难以拓展自己的数学知识。
4.学生缺乏思维能力和团队合作能力。通过数学建模来学习数学知识需要学生具有良好的团队协作能力和清晰的思维能力,但是很多学生缺乏这种能力,导致他们在数学学习中缺乏自信,无法迅速解决团队中的分歧,降低了学习效率。
5.学生不能够将理论知识与实践较好地结合。通过数学建模来学习数学,需要学生掌握数学术语,并且能够灵活运用。但就目前的情况而言,由于学生没有树立将理论与实际相结合的思想,导致他们在这方面比较弱。
三、如何在高校数学教学中应用数学建模来进行教学
1.学校和教师要树立正确的教学理念。当前,随着新课改的实施和教育目标的转变,数学教学中实施数学建模势在必行,因此,学校和教师要树立正确的教学理念,对数学建模有一个正确的认识,最大程度地发挥数学建模教学的作用。
2.完善数学建模体系。完善数学建模体系要注意以下两个方面:第一,充分利用多媒体教学设备。当前,多媒体教学工具的使用越来越广泛,教师通过多媒体教学设备,能够将知识点通过图片、视频、动画等方式直观地展现给学生,从而加深学生的理解,还可以活跃课堂氛围。第二,充分运用实验教学。教师还需要加入一些基础实验,丰富学生的学习内容和形式,从而激发学生学习数学的兴趣。
3.培养学生的数学建模能力。进行数学建模需要学生有一定的想象力和创新能力,并且有扎实的理论基础,能够将理论与实际较好地结合起来,因此,在日常的教学中,教师要注意培养学生的语言表达能力和逻辑思维能力。另外,要让学生多多练习,以此提高自己的逻辑思维能力。
四、结语
综上所述就是笔者通过分析数学建模在高校数学教学中的重要意义以及当前存在的问题提出的几点建议。将数学建模应用于数学教学中,是一项长期而艰难的工作,需要教育工作者和各个高校的不断探索、共同参与。
参考文献:
[1]肖楠,唐敏.分析数学建模对高校数学教学改革的意义[J].湖北函授大学学报,2017(10):112-114.
[2]徐岗,许金兰,陈临强.数学建模驱动的“计算机图形学”课堂教学模式改革[J].中国信息技术教育,2016(6):89-91.
[3]马丽雅.“数学建模”教学模式在小学数学中的应用[J].课程教育研究,2016(26):121.
[4]葛亚平.数学建模融入民办高职院校数学教学初探———以南通理工学院为例[J].教书育人:高教论坛,2015(21):82-83.
数学建模优秀论文 篇10
一、小学数学建模
"数学建模"已经越来越被广大教师所接受和采用,所谓的"数学建模"思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为"数学建模",其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。
二、小学数学建模的定位
1.定位于儿童的生活经验
儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。"数学建模"要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。
2.定位于儿童的思维方式
小学生的特点是年龄小,思维简单。因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。
实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使"数量关系"与数学原型"一乘两除"结合起来,并且使学生利用抽象与类比的思维方法完成了"数量关系"的"意义建模",从而创建了完善的认知体系。
三、小学"数学建模"的教学策略
1.培育建模意识
当前的小学数学教材中,大部分内容编排的思路都是以建模为基础,其内容的开展模式主要是"生活情景到抽象模型,然后到模型验证,最后到模型的运用和解释".培养建模思维的关键是对教材的解读是否从建模出发,使教材中的建模思想得到充分的开发。然后对教材中比较现实的问题进行充分的挖掘,将数学化后的实际问题创建模型,最后解决问题。教师要提高学生对建模的意识与兴趣就要充分挖掘教材,指导学生去亲身体会、思考沟通、动手操作、解决问题。其次,通过引入贴近现实生活、生产的探索性例题,使学生了解数学是怎样应用于解决这些实际问题的。同时,让学生在利用数学建模解决实际问题的过程中理解数学的应用价值和社会功能,不断增强数学建模的意识。
2.体验建模过程
在数学的建模过程中,要将生活中含有数学知识与规律的实际问题抽象化,从而建成数学模型。然后利用数学规律对问题进行推理,解答出数学的结果后再进行证明和解释,从而使实际问题得到合理的解决。我们以解决问题的方法为例,使学生能够解决题目不是教学的唯一目的.,使学生通过对数学问题的研究和体验来提升自己"创建"新模型的能力。使学生在不断的提出与解决问题的过程中培养成自主寻找数学模型和数学观念的习惯。如此一来,当学生遇到陌生的问题情境,甚至是与数学无关的实际问题时,都能够具备"模型"思想,处理问题的过程能具备数学家的"模型化"特点,从而使"模型思想"影响其生活的各个方面。
3.在数学建模中促进自主性建构
要使"知识"与"应用"得到良好的结合就必须提高学生积极构建数学模型的能力。我们要将数学教学的重点放在对学生观察、整合、提炼"现实问题"的能力培养上来。教学过程中,通过对日常问题的适当修改,使学生的实际生活与数学相结合,从而提升学生发现和提出问题,并通过创建模型解决问题的能力,为学生提供能够自主创建模型的条件。
我们以《比较》这课程内容为例,我们通过"建模"这一教学方法,培养学生对">""""<"和"="等符号。这种将学生的实际生活与课堂教学相结合的方法,使学生能够轻松的创建其数学模型,提升他们自主建模的信心。
四、总结
数学建模是将实际生活与数学相结合的有效途径和方法。学生在创建数学模型的过程中,其思维方式也得到了锻炼。小学阶段的教学,其数学模型的构建应当以儿童文化观为基础,其目的主要是培养儿童的建模思想,这也是提升小学生学习数学积极性,提升课堂文化气息的有效方法和途径。
下一篇:返回列表