初中数学二元一次方程组的解题技巧热选精彩8篇
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“初中数学二元一次方程组的解题技巧热选精彩8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
初中数学二元一次方程组的解题技巧【第一篇】
1、创设情境,营造课堂氛围,激发学生的创造潜能。
2、适时设疑,激发学生的学习兴趣,促进学生的思维能力。
3、打破常规,养成同学们预习的习惯,培养学生的自习能力。
总之,在教学过程中,我始终注意发挥学生的主体作用。让学生通过自主,探究,合作学习来主动发现结论,实现师生互动,同时,我也认识到教师不仅要教给学生知识,更重要是培养学生良好的数学素养和学习习惯,让学生学会学习,这样才能使自己真正成为一名受学生欢迎的教师。
初中数学二元一次方程组的解题技巧【第二篇】
身为一名刚到岗的人民教师,我们的工作之一就是课堂教学,借助教学反思我们可以拓展自己的教学方式,教学反思应该怎么写才好呢?以下是网友帮大家分享的“初中数学二元一次方程组的解题技巧热选精彩8篇”,欢迎阅读与收藏。
本节课是在学生学会用方程组表示问题中的条件以及能运用代入法、加减法解二元一次方程组的基础上,探究如何用二元一次方程组解决实际问题。
本节课的教学重点是让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型。教学难点是在探究过程中分析题意,由相等关系正确地建立方程组,从而把实际问题转化为数学问题。教学中,为了突破重难点,我主要让学生通过独立思考、自主探索、合作交流、估算验证等学习方式,在思考,交流等数学活动中,养成学生严谨的思维方式和良好的学习习惯,在解决这些实际问题当中,我充分体现了以学生发展为本,让学生积极参与并且有效参与的新课程理念,在这样的理念指导下,我充分让时间留给学生,让讲台留给学生,让发现留给学生,注重学生情感价值观的培养,发扬教学民主,发挥了学生的`主动意识,因此在学生解决某校环保小组成员收集废电池问题当中,学生能想出列方程组的方法,这是我意想不到的收获,这是我实施新课程理念中的最大成功,学生能用多种方法解题,扩展了学生的思维,让学生体验解题时有方法,方法多,方法好。从而树立了学生学习的信心,激发了学生学习的积极性,让学生真正成为课堂的主人。
教学中,我还通过创设情境,使教学内容更加生活化,采用引发指导、多样评价、鼓励肯定等多种教学方法,增强学生的学习兴趣,让学生体验成功,从而培养学生分析问题、解决问题的能力。同时,我能改变传统教学的方法,跳出文本,活用教材。如:在探究1使学生明确把实际问题转化为数学问题,也就是用二元一次方程组解决,从而让学生体验方程组的实用性。同时,在这一过程中,让学生对估算与精确计算进行比较,从而明确估算有时会有误差,要想得到正确数据,需要通过用数学知识精算,让学生体会数学的应用价值,从而鼓励学生更好地学好数学。
总之,从整节课来看,学生的情绪比较饱满,思维比较活跃。我能较好地完成了教学目标,但还有一些有待探索与需要改进的地方,如:时间把握得不够好,使得“感悟与反思”这一教学环节没有得以实施。如果我能在前面几个教学环节抓住时间,让学生在后几环节充分展现自我,我想这样更有利于学生的个性发展。再有,教学中,没有很好地关注极个别学生,以至于他们的积极性没能得以充分发挥,今后,我在这方面要多加努力。
媒体辅助手段丰富学生的学习资料,生动活泼地展示所学内容,强调学生的动脑思考和主动参与,通过集体讨论、小组活动,以合作学习促进学生的自主探究。
教师是学生学习的组织者、促进者、合作者,学生是学习的主人,在教师的指导下主动地、富有个性地学习,用自己的大脑去亲自探索,用自己的心灵亲自去体验、去感悟。
初中数学二元一次方程组的解题技巧【第三篇】
1、会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2、知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型。
3、引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
教学重点。
2、彻底理解题意。
教学难点。
教学过程。
一、情境引入。
二、建立模型。
1、怎样设未知数?
2、找本题等量关系?从哪句话中找到的?
3、列方程组。
4、解方程组。
5、检验写答案。
思考:怎样用一元一次方程求解?
三、练习。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
2、p38练习第1题。
四、小结。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
五、作业。
p42习题组第1题。
后记:
初中数学二元一次方程组的解题技巧【第四篇】
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型2017年-2017学年七年级数学下册全册教案(人教版)2017年-2017学年七年级数学下册全册教案(人教版)。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
2.彻底理解题意。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
2.p38练习第1题。
p42。习题组第1题。
后记:
初中数学二元一次方程组的解题技巧【第五篇】
1、会列二元一次方程组解简单的应用题并能检验结果的合理性。
2、提高分析问题、解决问题的能力。
3、体会数学的应用价值。
教学重点。
教学难点。
1、找实际问题中的相等关系。
2、彻底理解题意。
教学过程。
一、引入。
二、新课。
探究:
1、你能画线段表示本题的数量关系吗?
2、填空:(用含s、v的代数式表示)。
设小琴速度是v千米/时,她家与外祖母家相距s千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米。
3、列方程组。
4、解方程组。
5、检验写出答案。
讨论:本题是否还有其它解法?
三、练习。
1、建立方程模型。
2、p38练习第2题。
3、小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。
四、小结。
本节课你有何收获?
初中数学二元一次方程组的解题技巧【第六篇】
(学生活动)解下列方程:
(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)。
(学生活动)请同学们口答下面各题。
(老师提问)(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解。
因此,上面两个方程都可以写成:
(1)x(2x+1)=0(2)3x(x+2)=0。
(2)3x=0或x+2=0,所以x1=0,x2=-2(以上解法是如何实现降次的?)。
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法。
例1解方程:
思考:使用因式分解法解一元二次方程的条件是什么?
解:略(方程一边为0,另一边可分解为两个一次因式乘积)。
练习:下面一元二次方程解法中,正确的是()。
c.(x+2)2+4x=0,∴x1=2,x2=-2。
=x,两边同除以x,得x=1。
教材第14页练习1,2。
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用。
教材第17页习题6,8,10,11。
初中数学二元一次方程组的解题技巧【第七篇】
知识与技能。
(2)掌握二元一次方程组和对应的两条直线之间的关系;
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。
数形结合和数学转化的思想意识。
教具:多媒体课件、三角板。
学具:铅笔、直尺、练习本、坐标纸。
第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)。
内容:
1、方程x+y=5的解有多少个?是这个方程的解吗?
2、点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3、在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4、以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程。
第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)。
内容:
1、解方程组。
2、上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。
(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。
第三环节典型例题(10分钟,学生独立解决)。
探究方程与函数的相互转化。
内容:例1用作图像的方法解方程组。
例2如图,直线与的交点坐标是。
第四环节反馈练习(10分钟,学生解决全班交流)。
内容:
1、已知一次函数与的图像的交点为,则。
2、已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为()。
(a)4(b)5(c)6(d)7。
3、求两条直线与和轴所围成的三角形面积。
4、如图,两条直线与的交点坐标可以看作哪个方程组的解?
第五环节课堂小结(5分钟,师生共同总结)。
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
1、二元一次方程和一次函数的图像的'关系;
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程。
2、方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;
(2)两条直线的交点坐标是对应的方程组的解;
(1)代入消元法;
(2)加减消元法;
(3)图像法,要强调的是由于作图的不准确性,由图像法求得的解是近似解。
第六环节作业布置。
习题组(优等生)1、2、3b组(中等生)1、2c组1、2。
附:板书设计。
初中数学二元一次方程组的解题技巧【第八篇】
相对前面两课内容来说,这一课的内容较为容易理解,再加上有前面两课的基础,学生应该好学习些。因此,这一课我在以下两个方面要求学生做好,图形解方程组的画图规范,利用图形进一步理解前一课的内容:“当x为何值时,y1<y2,y1=y2,y1>y2的题目类型”。
在课堂上,学生能够结合例题,总结出利用函数的图象解二元一次方程组的解题步骤:变形、画图、标交点、得结论。利用足够充分的时间让学生画图象解方程组,学生标交点的工作做得还不是很好,为此,提出了怎样才确保是实实在在可以看出是由图象得到交点坐标,得到方程组的解的,学生讨论的结果还是让我们满意的,不但由交点画垂线,在数轴上标出交的横坐标和纵坐标,而且把交点坐标在图上写出来,做到双保险。
利用函数的图象复习了上一课的学习难点,学生理解的人数更多了,在利用函数的增减性认识和理解,确实效果会更好些,需要注意的是利用函数的增减性理解须从交点出发向左或者向右变化来理解。
要动员学生议论或争论起来,这才是最有效的手段,个别辅导时,有同学在我的办公桌前进行争执,我看到了学生因相互的讨论而掌握,学生自己能够真正动起来,这是最好的,我希望学生是学习的主人,课堂上要努力让他们成为课堂的主人。
上一篇:实用安全方面心得体会范文5篇
下一篇:远大前程读后感样例【5篇】