数据分析师的工作总结范文热选【优质5篇】
【请您参阅】下面供您参考的“数据分析师的工作总结范文热选【优质5篇】”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!
数据分析师的工作总结【第一篇】
但数据分析技能也是未来必不可少的工作技能之一。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定的。
“大数据分析师就是一群玩数据的人,玩出数据的商业价值,让数据变成生产力。”而大数据和传统数据的最大区别在于,它是在线的、实时的、规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。
国内某大型招聘平台给出的数据分析师平均薪酬为:9724(取自1139份样本),且北京、上海、广州、深圳、杭州、南京、武汉、成都、长沙为大数据分析师需求量前十的城市。
数据分析师的工作总结【第二篇】
5、参与推荐系统建设,直接向cto汇报。
1、全日制大学本科及以上学历,数学、统计、计算机等相关专业;
2、3年以上数据统计相关经验;
3、强烈的责任心,良好的沟通能力,细致耐心的工作态度,为人开朗乐观;
4、良好的学习能力,逻辑清晰,对数据敏感;
5、具有简单开发与数据挖掘算法基础优先优先。
数据分析师的工作总结【第三篇】
虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。
2、数据查询员/处理员:数据处理没问题,缺乏数据解读能力。
这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并且可以通过监控系统或者原始的数据,处理得到这些数据。统计学的方法,这批人还是很精通的,统计学的工具,他们也是用起来得心应手,你让他们做一下因子分析,聚类肯定是没问题,各类检验也是用的炉火纯青。他们的不足是:1、如果不告诉他们命题,那么他们就不知道该应用什么样的方法去得到结论了。2、对于数据的处理没问题,但是却没有一个很好的数据解读能力。只能在统计学的角度上解释数据。
数据分析师这群人,对于数据的处理已经不是问题了,他们的重点已经转化到怎么样去解读数据了,同样的数据,在不同人的眼中有不一致的内容。好的数据分析师,是能通过数据找到问题,准确的定位问题,准确的找到问题产生的原因,为下一步的改进,找到机会点的人。往往科班出身的人,欠缺的不是在处理数据上,而是在解读数据上,至于将数据和产品结合到一起,则是其更缺少的能力了。
4、数据应用师:将数据还原到产品中,为产品所用。
5、数据规划师:走在产品前面,让数据有新的价值方向。
1.标准报表。
回答:发生了什么?什么时候发生的?
示例:月度或季度财务报表。
我们都见过报表,它们一般是定期生成,用来回答在某个特定的领域发生了什么。从某种程度上来说它们是有用的,但无法用于制定长期决策。
2.即席查询。
回答:有多少数量?发生了多少次?在哪里?
示例:一周内各天各种门诊的病人数量报告。
即席查询的最大好处是,让你不断提出问题并寻找答案。
3.多维分析。
回答:问题到底出在哪里?我该如何寻找答案?
示例:对各种手机类型的用户进行排序,探查他们的呼叫行为。
通过多维分析(olap)的钻取功能,可以让您有初步的发现。钻取功能如同层层剥笋,发现问题所在。
4.警报。
回答:我什么时候该有所反应?现在该做什么?
示例:当销售额落后于目标时,销售总监将收到警报。
5.统计分析。
回答:为什么会出现这种情况?我错失了什么机会?
示例:银行可以弄清楚为什么重新申请房贷的客户在增多。
这时您已经可以进行一些复杂的分析,比如频次分析模型或回归分析等等。统计分析是在历史数据中进行统计并总结规律。
6.预报。
回答:如果持续这种发展趋势,未来会怎么样?还需要多少?什么时候需要?
示例:零售商可以预计特定商品未来一段时间在各个门店的需求量。
预报可以说是最热门的分析应用之一,各行各业都用得到。特别对于供应商来说,能够准确预报需求,就可以让他们合理安排库存,既不会缺货,也不会积压。
7.预测型建模。
回答:接下来会发生什么?它对业务的影响程度如何?
示例:酒店和娱乐行业可以预测哪些vip客户会对特定度假产品有兴趣。
如果您拥有上千万的客户,并希望展开一次市场营销活动,那么哪些人会是最可能响应的客户呢?如何划分出这些客户?哪些客户会流失?预测型建模能够给出解答。
8.优化。
回答:如何把事情做得更好?对于一个复杂问题来说,那种决策是最优的?
示例:在给定了业务上的优先级、资源调配的约束条件以及可用技术的情况下,请您来给出it平台优化的最佳方案,以满足每个用户的需求。
优化带来创新,它同时考虑到资源与需求,帮助您找到实现目标的最佳方式。
数据分析师的工作总结【第四篇】
年龄:25。
教育经历:
院校:蓝翔技校。
专业:计算机软件。
学历:专科。
主修课程:
数据库原理、软件工程。
获奖情况:
连续2年获得校三好学生、二等学习优秀奖学金。
全国大学生计算机竞赛市二等奖。
项目经验:
201x、1x-至今。
单位:翰威特咨询公司分公司。
筛选分析调研数据,使用excel处理超过2万个样本数据,具有丰富的数据处理经验;
自我评价:本人性格开朗,思想正直,诚信,稳重。工作认真踏实,责任心强,善于独立思考,分析问题,解决问题。
数据分析师的工作总结【第五篇】
位于*东南部的福建(三明、泉州、福州、宁德)、江西(南丰、广川)两省山岳地区,有着数量较多的一种以生土为主要建筑材料、生土与木结构相结合并不同程度使用石材的“土堡”建筑。这些土堡建筑以合院式建筑为主,规模宏,造型奇特,结构精巧,或建在海拔较高的山岗(高岗型),或离村庄不远的山坡(坡地型),或建在水田当中(田中型),或土堡与民居建在一起(混合型),与当地其他传统低矮民居组合成小不同的村落,服务于家族或村落的聚居防御需要。它们比福建土楼历史更悠久,既有着悠久的文化历诗统,又与周边自然环境完美融合,构成一组组和谐美妙的景观。其中,福建土堡最具代表性,数量也最多,而福建土堡又以三明市田、尤溪和永安三县留存数量最多、保存最完整、种类最齐全。
从20xx年至20xx年的五年时间里,三明土堡通过土堡课题专项调研、第三次全国文物普查、拍摄土堡资料宣传电视片、召开*福建土堡全国学术研讨会、举办土堡民俗文化节、福建土堡风光摄影展等系列活动,已初步摸清了三明境内土堡的基本情况:
1、土堡的创建历史:产生于隋末唐初,成熟于两宋,盛行于明清,并一直延续至今。
2、土堡的留存数量:200余座,约占总数量的十分之一。
3、范文top100土堡的建筑结构:内通廊式与合院式两种,并以合院式为主。
4、土堡的分布范围:福建、江西两省,并以福建为多;福建省内三明、泉州、福州、宁德四地市,并以三明地区为多;三明市内田、尤溪、永安、宁化、沙县、将乐、清流、明溪、泰宁、三元、梅列十一县(市、区),并以田、尤溪、永安为多。
5、土堡的主要功能:防御为主。
出自
6、土堡的产生原因:生存需要。
二、福建土堡的认定。
关于福建土堡的定义,至今尚未有公开的认定,因此本文的定义只是个人的观点,若有谬误还请方家指正。可以从以下几个方面来探究:
1、三明土堡与土围(江西)、土楼(福建)、围拢屋(粤东)的异同,如下表。
尽管四者之间有差异,但共性是十分明显的,都具有防御性,只师能不同而已,土围、土堡以防御为主,而土楼、围拢屋以居住为主。
2、福建土堡是包括福建土楼在内的*南方乡土防御性建筑的鼻祖。