2024年高中数学课教学设计【实用4篇】

网友 分享 时间:

【导读预览】此篇优秀范文“2024年高中数学课教学设计【实用4篇】”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!

高中数学课教学设计【第一篇】

想方法,都是学生今后学习和工作中必备的数学素养。

(1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。

(2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。

(3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。

(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。

(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。

教学重点:公式的推导、公式的特点和公式的运用。

教学难点:公式的推导方法及公式应用中q与1的关系。

获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。

(一)创设情境,提出问题。(时间设定:3分钟)

提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?

高中数学课教学设计【第二篇】

高中数学教学应鼓励学生用数学去解决问题,甚至去探索一些数学本身的问题。教学中,教师不仅要培养学生严谨的逻辑推理能力、空间想象能力和运算能力,还要培养学生数学建模能力与数据处理能力,加强在“用数学”方面的教育。最好的方式就是用多媒体电脑和诸如《几何画板》、《几何画王》、《几何专家》等工具软件,为学生创设数学实验情境。例如,在上“棱柱和异面直线”课时,我们指导学生用硬纸制作“长方体”和“正三棱柱”等模型。教师用《几何画板》设计并创作“长方体中的异面直线”课件,引导学生利用自己制作的“长方体”模型和上述课件,思考以下问题:“长方体中所有体对角线(4条)与所有面对角线(12条)共组成多少对异面直线?”、“长方体中所有体对角线(4条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有棱(12条)之间相互组成多少对异面直线?”、“长方体所有面对角线(12条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有面对角线(12条)之间相互组成多少对异面直线?”。然后由学生独立进行数学实验,探讨上述问题。

此外,教师还要根据数学思想发展脉络,充分利用实验手段尤其是运用现代教育技术,创设教学实验情景、设计系列问题、增加辅助环节,有助于引导学生通过操作、实践,探索数学定理的证明和数学问题的解决方法,让学生亲自体验数学建模过程,培养学生的数学创新能力和实践能力,提高数学素养。

巧设情境,增加学生的投入感

为了构建生动活泼富有个性的数学课堂,我把创设情境,激发学生的学习兴趣当成数学教学的重头戏,使之成为数学课的一道亮丽的风景。 《数学课程标准》强调数学课堂教学必须注意从学生熟悉的生活情境和感兴趣的事物出发,使学生有更多的机会从周围熟悉的事物中学习数学,理解数学,让学生感受到数学就在他们周围。因此,我从学生已有的生活经验出发,创设有趣的教学情境,强化学生的感性认识,丰富学生的学习过程,引导学生在情境中观察、操作、交流,感受数学与日常生活的密切联系,感受数学在生活中的作用,加深对数学的理解,并运用数学知识解决现实生活中的问题。如《课程标准》在综合实践的教学建议部分提供了这样一个案例:

要求学生统计自己家庭一周内丢弃的塑料袋个数,并依据所分享的“2024年高中数学课教学设计【实用4篇】”,老师也把自己的统计结果融入其中);(4)统计分析(引导学生根据数据对全班一周丢弃塑料袋情况用不同的算法进行描述和评价);(5)结合问题情境深入领会有关概念(如平均数、中位数、众数等)的含义,并通过问题的层层深入让学生进一步感受不同统计量来表示同一问题的必要性;(6)问题自然延伸(计算这些袋对土地造成的污染,先估计一个袋的污染,然后通过多种方式计算推及到一周呢?一年呢?全校同学的家庭呢?照此速度要多久就会污染整个学校呢?)。由此例可以看出,这种模式的一个关键点就是围绕着学生日常生活来展开的,由学生身边的事所引出的数学问题,使学生体会到数学与生活的紧密和谐关系,朴素的问题情境自然让学生产生一种情感上的亲和力和感召力,可以让他们真正应用数学,并引导他们学会做事。

高中数学课教学设计【第三篇】

教学目标:

(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化

(2)理解直线与二元一次方程的关系及其证明

教学用具:计算机

教学方法:启发引导法,讨论法

教学过程:

下面给出教学实施过程设计的简要思路:

教学设计思路:

(一)引入的设计

前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次。

肯定学生回答,并纠正学生中不规范的表述。再看一个问题:

问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次。

肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”。

启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论。

学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

问题1“任意直线的方程都是二元一次方程吗?”

(二)本节主体内容教学的设计

这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路。

学生或独立研究,或合作研究,教师巡视指导。

经过一定时间的研究,教师组织开展集体讨论。首先让学生陈述解决思路或解决方案:

思路一:…

思路二:…

教师组织评价,确定最优方案(其它待课下研究)如下:

按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在。

当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程。

当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?

学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。

综合两种情况,我们得出如下结论:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程。

至此,我们的问题1就解决了。简单点说就是:直线方程都是二元一次方程。而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”。

同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

学生们不难得出:二者可以概括为统一的形式。

这样上边的结论可以表述如下:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程。

启发:任何一条直线都有这种形式的方程。你是否觉得还有什么与之相关的问题呢?

问题2任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?

师生共同讨论,评价不同思路,达成共识:

(1)当时,方程可化为

这是表示斜率为、在轴上的截距为的直线。

(2)当时,由于、不同时为0,必有,方程可化为

这表示一条与轴垂直的直线。

因此,得到结论:

在平面直角坐标系中,任何形如(其中不同时为0)的二元一次方程都表示一条直线。

为方便,我们把(其中不同时为0)称作直线方程的一般式是合理。

动画演示

演示“直线各参数”文件,体会任何二元一次方程都表示一条直线。

至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系。

(三)练习巩固、总结提高、板书和作业等环节的设计

高中数学课教学设计【第四篇】

教学目标:

(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化

(2)理解直线与二元一次方程的关系及其证明

教学用具:计算机

教学方法:启发引导法,讨论法

教学过程:

下面给出教学实施过程设计的简要思路:

教学设计思路:

(一)引入的设计

前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次。

肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次。

肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”。

启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论。

学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

问题1“任意直线的方程都是二元一次方程吗?”

(二)本节主体内容教学的设计

这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路。

学生或独立研究,或合作研究,教师巡视指导.

经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

思路一:…

思路二:…

教师组织评价,确定最优方案(其它待课下研究)如下:

按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在。

当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程。

当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?

学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。

综合两种情况,我们得出如下结论:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程。

至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”。

同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

学生们不难得出:二者可以概括为统一的形式。

这样上边的结论可以表述如下:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程。

启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

问题2任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?

师生共同讨论,评价不同思路,达成共识:

(1)当时,方程可化为

这是表示斜率为、在轴上的截距为的直线。

(2)当时,由于、不同时为0,必有,方程可化为

这表示一条与轴垂直的直线。

因此,得到结论:

在平面直角坐标系中,任何形如(其中不同时为0)的二元一次方程都表示一条直线。

为方便,我们把(其中不同时为0)称作直线方程的一般式是合理。

动画演示

演示“直线各参数”文件,体会任何二元一次方程都表示一条直线。

至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.

(三)练习巩固、总结提高、板书和作业等环节的设计

48 2270762
");